Open Access Open Access  Restricted Access Subscription Access

Reliability Test Plan for Gumbel – Pareto Life Time Model

Jeena Joseph, K. K. Jose

Abstract


Here, we consider Gumbel - X family and obtained the reliability measure for a stress – strength model. A reliability test plan is also developed for acceptance/rejection of a lot of products submitted for inspection with lifetimes generated by Gumbel- Pareto model. Tables giving reliability measures, acceptance sampling numbers using binomial and Poisson approximations, operating characteristic (OC) function values, minimum ratio of true θ and required  for the acceptability of a lot with producer’s risk of 0.05 are prepared. The results are illustrated with respect to a real life data set on ordered failure times of a software.


Keywords


Gumbel - Pareto Distribution; Operating Characteristic Function; Reliability Test Plan; Software Reliability; Stress - Strength Analysis.

Full Text:

PDF

References


A. Alzaatreh; C. Lee; F. Famoye; A New Method for Generating Families of Continuous Distributions, Metron, 71 (1) 63 – 79 (2013 a).

A. Alzaatreh; C. Lee; F. Famoye; Weibull Pareto Distribution and Its Applications, Communications in Statistics - Theory and Methods, 42 (9) 1673 – 1691 (2013 b).

A. R. Mughal; M. Aslam; J. Hussain; A. Rehman; Economic Reliability Group Acceptance Sampling Plans for Lifetimes Following a Marshall - Olkin Extended Distribution, Middle Eastern Finance and Economics, 7 1450 – 2889 (2010).

A. Wood; Predicting software reliability, IEEE Transactions on Software Engineering, 29 (11) 69-77 (1996).

C. Kus; A new lifetime distribution, Computational Statistics and Data Analysis, 51(9) 4497 – 4509 (2007).

E. Krishana; K. K. Jose; M. M. Ristic; Applications of Marshall - Olkin Frechet distribution, Communications in Statistics: Simulation and Computation, 42 (1) 76 – 89 (2013).

F. Proschan; Theoretical explanation of observed decreasing failure rate, Technometrics, 5 (3) 375 – 383 (1963).

G. M . Cordeiro; R. B. Silva; A. D. Nascimento; Recent advances in lifetime and reliability models, (2020).

H. P. Goode; J. H. K. Kao; Sampling plans based on the Weibull distribution, Proceedings of Seventh National Symposium on Reliability and Quality Control, Philadelphia, Pennsylvania, 24 – 40 (1961).

K. K. Jose; S. Remya; Negative Binomial Marshall Olkin Rayleigh Distribution and Its Applications, Economic Quality Control, 30(2) 89 – 98 (2015).

K. Rosaiah; R. R. L. Kantam; Acceptance sampling based on the inverse Rayleigh distribution, Economic Quality Control, 20 (2) 277 - 286 (2005).

K. Rosaiah; R. R. L. Kantam; C. S. Kumar; Reliability test plans for exponentiated log- logistic distribution, Economic Quality Control, 21 (2) 165 – 175 (2006).

M. H.Tahir; M. Alizadehz; M. Mansoorx; G. M. Cordeiro; M. Zubairk; The Weibull - Power function Distribution with Applications, Hacettepe University Bulletin of Natural Sciences and Engineering, Series B; Mathematics and Statistics, (2014).

R. Al – Aqtash; C. Lee; F. Famoye; Gumbel - Weibull Distribution: Properties and Applications, Journal of Modern Applied Statistical Methods, 13 (2) 201 – 225 (2014).

R. Al – Aqtash; F. Famoye; C. Lee; On Generating a New Family of Distributions using the Logit Function, Journal of Probability and Statistical Science, 13 (1) 135 – 152 (2015).

R. C. Gupta; M.E. Ghitany; D. K. Al-Mutairi; Estimation of reliability from Marshall-Olkin extended Lomax distributions, Journal of Statistical Computation and Simulation, 80(8) 937 – 947 (2010).

R. R. L. Kantam; K. Rosaiah; Half logistic distribution in acceptance sampling based on life tests, IAPQR Transactions, 23 (2) 117 – 125 (1998).

R. R. L. Kantam; K. Rosaiah; G.S. Rao; Acceptance sampling based on life tests: log-logistic model, Journal of Applied Statistics, 28 (1) 121 – 128 (2001).

S. G. Rao; A Group Acceptance Sampling Plan for Lifetimes Following a Generalized Exponential Distribution, Economic Quality Control, 24 (1) 75 - 85 (2009).

S. G. Rao; M. E. Ghitany; R.R.L. Kantam; An Economic Reliability Test Plan for Marshall-Olkin Extended Exponential Distribution, Applied Mathematical Sciences, 5 103 – 112 (2011).

S. G. Rao; M. E. Ghitany; R. R. L. Kantam; Reliability Test Plans for Marshall-Olkin Extended Exponential Distribution, Applied Mathematical Sciences, 3 (55) 2745 – 2755 (2009).

S. S. Gupta; P. A. Groll; Gamma distribution in acceptance sampling based on life tests, Journal of the American Statistical Association, 56 942 – 970 (1961).


Refbacks

  • There are currently no refbacks.




INDIAN ASSOCIATION FOR RELIABILITY AND STATISTICS

(IARS)

© 2015 IARS. All right reserved.