IJSREG Trion Studio

No Publication Cost

Vol 7, No 3 :

subscription

A Bayesian Approach for Reliability Estimation of a Family of Lifetime Distributions under Squared Error and Entropy Losses Vijay Kumar Pandey, Shantanu Vyas
Vijay Kumar Pandey , Shantanu Vyas
Abstract
Here, a family of lifetime distributions, which covers many well-known lifetime distributions as specific cases, is considered. Bayesian estimation procedures are developed for two measures of reliability, andunder Type II and Type I censoring. Two type of loss functions namely Squared error loss function (SELF) and General entropy loss function (GELF) are considered. A new technique of obtaining these estimators is utilized which consists the use of estimator of powers of parameter in obtaining the estimators of various reliability measures. Various risk functions are obtained. Results obtained under two different type of censorings are compared in numerical findings.
Full Text
PDF
References
A. Chaturvedi; A. Pathak; Bayesian estimation proceduresfor three parameter exponentiatedweibull distribution under entropy loss function and type ii censoring,InterStat, pagehttp://interstat.statjournals.net/YEAR/2013/articles/1306001.pdf, 2013.
A. Chaturvedi; K. G. Singh; A family of lifetime distributions and relatedestimation and testing procedures for the reliability function, Jour. Appl.Statist. Sci., 16(2) 35-40 (2008).
A. Chaturvedi; K. G. Singh; Bayesian estimation procedures for a familyof lifetime distributions under squared-error and entropy losses,Metron,64(2) 179-198 (2006).
A. Chaturvedi; K. Surinder; Further remarks on estimating the reliabilityfunction of exponential distribution under type I and type II censorings,Brazilian Jour. Prob. Statist., 13(2) 29-39 (1999).
A. Chaturvedi; S. K. Tomer; UMVU estimation of the reliability functionof the generalized life distributions, Statist. Papers, 44(3) 301-313 (2003).
A. Chaturvedi; S. K. Tomer; Classical and bayesian reliability estimationof the negative binomial distribution, Jour. Applied Statist Sci., 11 33-43 (2002).
A. Chaturvedi; S. Vyas; Estimation and testing procedures of reliabilityfunctions of exponentiateddistributionsunder censorings, STATISTICA,77(1) 13-31(2017).
A. Chaturvedi; S. Vyas; Estimation and testing procedures of reliability functions of three parameter Burr distribution under censorings, STATISTICA,77(3) 207-235 (2017).
A. Chaturvedi; S. Vyas; Generalized Gamma-
A. Chaturvedi; U. Rani; Classical and Bayesian reliability estimationof the generalized maxwell failure distribution, Jour. Statist. Res., 32 113-120 (1998).
A. Chaturvedi; U. Rani; Estimation procedures for a family of densityfunctions representing various life-testing models,Metrika, 46 213- 219 (1997).
A.P. Basu; N. Ebrahimi; Bayesian approach to life testing and reliability estimation using asymmetric loss function, Jour. Statist. Planning andInfer., 29 21-31 (1991).
C.D. Lai; M. Xie; D.N.P. Murthy. Modified weibull model, IEEE Trans Reliab, 52 33-37(2003).
Chao; On comparing estimators of P(X >Y ) in the exponential case, IEEE trans. reliab. Technometrics, R(26) 389-392 (1982).
Chaturvedi; T. Kumari; Estimation and testing procedures for the reliability functions of a family of lifetime distributions. InterStat, pagehttp://interstat.statjournals.net/YEAR/2015/abstracts/1504001.php,2015.
D. J. Bartholomew; A problem in life testing, J Am Stat Assoc, 52(2) 350-355, (1957).
D. J. Bartholomew; The sampling distribution of an estimate arising in life testing, Technometrics, 5 361-374 (1963).
E.L. Pugh; The best estimate of reliability inthe exponential case, Operations Research,1157-61 (1963).
G. D. Kelley; J. A. Kelley; W.R. Schucany. efficient estimation of P(Y
H. Tong; A note on the estimation of P(Y
H. Tong; Letter to the editor Technometrics, 17 393 (1975).
H.F. Martz; R.A. Waller. BayesianReliability Analysis, John Willey Sons. Inc.,New York, (1982).
I.S. Gradshteyn; I.M. Ryzhik; Tables of Integrals,Series and Products, Academic Press, London (1980).
I.W. Burr; Cumulative frequency functions, Ann. Math. Statist., 13 215-232 (1942).
I.W. Burr; P.J. Cislak; On a general system of distributions:i. its curveshapedcharacteristics; ii. the sample median, J. Amer.Statist. Assoc., 63 627-635 (1968).
K. Constantine; M. Karson; S. K. Tse. Estimators of P(Y
K. S. Lomax; Business failures another example of the analysis of failuredata, Jour. Amer. Statist. Assoc., 49 847-852(1954).
L.J. Bain; Statistical Analysis of Reliability and Life-testing Models-Theory and Practice, Marcel Dekker, New York, (1978).
M. A. W. Mahmoud; H. SH. Al-Nagar;On generalized order statistics from linear exponential distribution and its characterization, Stat Papers,50 407-418, (2009).
M. Ahsanullah; Linear prediction of record values for the two-parameter exponential distribution, Ann. Inst. Statist. Math., 32(PartA) 363-368 (1980).
M. Awad; K. Gharraf; Estimation ofP(Y< X) in the burr case: A comparative study,Commun. Statist. B-Simul. Comp.,15(2) 389–403 (1986).
M. Ljubo; Curves and concentration indices for certain generalized pareto distributions, Stat Rev, 15 257-260 (1965).
M. Nikulin; F. Haghighi; A chi-squaredtest for the generalized power Weibullfamily for the head-and-neck cancercensored data, Journal ofMathematicalsciences, 133(3) 1333-1341(2006).
Maxwell distribution: Properties and estimation of Reliability functions, Journal of Statistics andManagement Systems, 22(8) 1425-1444 (2019)
N.L. Johnson; Letter to the editor,Technometrics, 17 393 (1975).
N.L. Johnson; S. Kotz; N. Balakrishnan; Continuous Univariate Distributions-Vol. 1, John Wiley Sons, New York (1994).
P. Basu; Estimates of reliability for some distributions useful in life testing, Technometrics, 6 215–219 (1964).
P. Enis; S. Geisser; Estimation of the probability that y < x, Jour. Amer. Statist. Assoc., 66 162-168 (1971).
P.R. Tadikamalla; A look at the burr andrelated distributions, Int Stat Rev,48337–344 (1980).
R. Calabria; G. Pulcini; An engineering approach to Bayes estimation for Weibull distribution, Microelectron. Reliab., 34 789- 802 (1994).
R. K. Tyagi; S. K. Bhattacharya; A note on the mvu estimation of reliability for the maxwell failure distribution. Estadistica, 41 73-79(1989a).
R. K. Tyagi; S. K. Bhattacharya; Bayes estimator of the maxwell'svelocity distribution function.Statistica, 49 563-567 (1989b).
R.D. Gupta; D. Kundu; Hybrid censoring schemes with exponential failure distribution, Communications in Statistics Theory and Methods,27(v) 3065-3083 (1998).
R.U. Khan; B. Zia; Recurrence relations for single and product moments of record values from gompertz distribution and a characterization, World Applied Sciences Journal, 7(10) 1331-1334 (2009).
S.K. Bhattacharya; Bayesian approach to life testing and reliability estimation, Jour. Amer. Statist. Assoc., 62 48-62 (1967).
S.K. Sinha; Reliability and Life Testing,Wiley Eastern Limited, New Delhi (1986).
Y. S. Sathe; S. P. Shah; OnestimationP(Y < X) for the exponential distribution, Commun. Statist.-Theor. Meth., 10 39–47 (1981).

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser