IJSREG Trion Studio

No Publication Cost

Vol 4, No 1 :

openaccess

A Bayesian Approach to the Optimal Warranty Length for an Exponential Life Time Product
D. T. Patel , M.n Patel
Abstract

The major goal of the manufacturing firm is to increase profit. The sale volume and warranty are the important factors for making products. A good warranty policy signals the higher reliability of the product. A longer warranty period increases significantly the production cost. In this regard it is important to determine optimal period. The optimal warranty is that which maximize the expected utility of the product. In this paper a decision model is presented for manufacturing firms to determine the optimal warranty length based on the maximization of expected utility function. We have considered a combination of free replacement policy and pro-rata policy for warranty. The results obtained are compared with a single free-replacement and pro-rata policy. Under a Bayesian setup the expected utility function is derived for an exponential life time distributed product. A real data is considered for illustration. A sensitivity analysis is carried out to check the effect of hyper parameters on the optimal warranty length and the optimal value of expected utility. Some findings are presented based on the sensitivity analysis.
Full Text
PDF
References

A. M. Polovko; Fundamentals of Reliability Theo -ry, Academic Press, (1968).
C. Kim; K. Han; Estimation of the scale parameter of the Rayleigh distribution under general progressi -ve censoring, Journal of the Korean Statistical Society, 38 239-246 (2009).
D. R. Barot; M.N. Patel; Preference of Estimation Approach for Rayleigh Progressive type-II Data, Journal of Natural Science Research, 5(3) 11-17(2015).
H. Gutierrez-Pulido; V. Aguirre-Torres; J. A. Christen; A Bayesian approach for the determinati -on of warranty length, Journal of Quality Technology, 38 180-189 (2006).
H. Z. Huang; Z. J. Liu; D. N. P. Murthy; Optimal reliability, warranty and price for new products, IIE Trans., 39819-827(2007).
J. B. Shah; M. N. Patel; Bayesian estimation of parameters of mixed geometric failure models from Type-I group censored sample, Journal of Appiled Statistics, 36(6) 495-506(2009).
J. F. Lawless; Statistical Models and Methods for lifetime data, Wiley, (2003).
J. G. Patankar; A. Mitra; W. R. Blischke; D. N. P. Murthy; Product Warranty Handbook, Marcel Dekker, 421-438 (1996).
J. Nocedal; S.J. Wright; Numerical Optimization, Springer (2006).
K. Lange; Numerical Analysis for Statisticians, Springer (1999).
Kelly C. A. Kelly; W. R. Blischke; D. N. P. Murthy; Product Warranty Handbook, Marcel Dekker, 409-419 (1996).
M. U. Thomas,Engineering economic decisions and warranties, The Engineering Economist, 50 307-326 (2005).
N. D. Singpurwalla; S. P. Wilson;Failure models indexed by two scales, Advances in Applied Probability, 30 1058-1072 (1998).
N. R. Mann; R. E. Schafer; N. D. Singpurwalla (1974), Methods for Statistical Analysis of Reliability and Life Data, Wiley.
N. W. Patel; M.N. Patel, An alternative Estimator of geometric life time model under Type-I progressive censored samples, Aligarh Journal of Statistics, 26 29-48 (2006).
R. A. Waller; M. M. Johnson; M. S. Waterman; H. F. Martz;J. B. Fussell; G. R. Burdick; Nuclear Systems Reliability Engineering and Risk Assessment, 584-606 (1977).
R. Viveros; N. Balakrishnan; Interval estimation of parameters of life from progressively censored data, Technometrics, 36 84-91 (1994).
S. Chukova; R. Arnold; D.Q. Wang; Warranty analysis an approach to modeling imperfect repairs, International journal of production economics, 89 57-68 (2004).
S. J. Wu; S. R. Huang; Optimal Warranty Length for a Rayleigh Distributed Product with Progressive Censoring, IEEE Transactions on Reliability, 59 661-666 (2010).
T. Scitovszky, Some consequence of the habit of judding quality by price, Review of economic studi -es 12 100-105 (1945).
W. Boulding; A. Kirmani; A Consumer-Side Experimental examination of signaling theory, The Journal of consumer Reasearch, 20(1) 111-123 (1993).
W. H. Press; B. P. Fleming; S. A. Teukolsky; W.T. Vetterling;Numerical Recipes, Cambridge Univer -sity Press (1986).
W. Nelson; Applied life data analysis, New York, PP. 228 (1982).
W. R. Blischke; D. N. P Murthy, Warranty Cost Analysis, Marcel Dekker (1993).
W. R. Blischke; D. N. P. Murthy; Product Warranty Handbook, New York, Marcel Dekker, 421-438 (1996).
Y. H. Chien; Optimal age-replacement policy under an imperfect renewing free-replacement warranty, IEEE Trans. Reliability, 57 (1) 125 -133 (2008).

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser