A. M. Polovko; Fundamentals of Reliability Theo -ry, Academic Press, (1968).
C. Kim; K. Han; Estimation of the scale parameter of the
Rayleigh distribution under general progressi -ve censoring, Journal of
the Korean Statistical Society, 38 239-246 (2009).
D. R. Barot; M.N. Patel; Preference of Estimation Approach for
Rayleigh Progressive type-II Data, Journal of Natural Science Research,
5(3) 11-17(2015).
H. Gutierrez-Pulido; V. Aguirre-Torres; J. A. Christen; A
Bayesian approach for the determinati -on of warranty length, Journal of
Quality Technology, 38 180-189 (2006).
H. Z. Huang; Z. J. Liu; D. N. P. Murthy; Optimal reliability, warranty and price for new products, IIE Trans., 39819-827(2007).
J. B. Shah; M. N. Patel; Bayesian estimation of parameters of
mixed geometric failure models from Type-I group censored sample,
Journal of Appiled Statistics, 36(6) 495-506(2009).
J. F. Lawless; Statistical Models and Methods for lifetime data, Wiley, (2003).
J. G. Patankar; A. Mitra; W. R. Blischke; D. N. P. Murthy; Product Warranty Handbook, Marcel Dekker, 421-438 (1996).
J. Nocedal; S.J. Wright; Numerical Optimization, Springer (2006).
K. Lange; Numerical Analysis for Statisticians, Springer (1999).
Kelly C. A. Kelly; W. R. Blischke; D. N. P. Murthy; Product Warranty Handbook, Marcel Dekker, 409-419 (1996).
M. U. Thomas,Engineering economic decisions and warranties, The Engineering Economist, 50 307-326 (2005).
N. D. Singpurwalla; S. P. Wilson;Failure models indexed by two scales, Advances in Applied Probability, 30 1058-1072 (1998).
N. R. Mann; R. E. Schafer; N. D. Singpurwalla (1974), Methods for Statistical Analysis of Reliability and Life Data, Wiley.
N. W. Patel; M.N. Patel, An alternative Estimator of geometric
life time model under Type-I progressive censored samples, Aligarh
Journal of Statistics, 26 29-48 (2006).
R. A. Waller; M. M. Johnson; M. S. Waterman; H. F. Martz;J. B.
Fussell; G. R. Burdick; Nuclear Systems Reliability Engineering and
Risk Assessment, 584-606 (1977).
R. Viveros; N. Balakrishnan; Interval estimation of parameters
of life from progressively censored data, Technometrics, 36 84-91
(1994).
S. Chukova; R. Arnold; D.Q. Wang; Warranty analysis an
approach to modeling imperfect repairs, International journal of
production economics, 89 57-68 (2004).
S. J. Wu; S. R. Huang; Optimal Warranty Length for a Rayleigh
Distributed Product with Progressive Censoring, IEEE Transactions on
Reliability, 59 661-666 (2010).
T. Scitovszky, Some consequence of the habit of judding quality by price, Review of economic studi -es 12 100-105 (1945).
W. Boulding; A. Kirmani; A Consumer-Side Experimental
examination of signaling theory, The Journal of consumer Reasearch,
20(1) 111-123 (1993).
W. H. Press; B. P. Fleming; S. A. Teukolsky; W.T. Vetterling;Numerical Recipes, Cambridge Univer -sity Press (1986).
W. Nelson; Applied life data analysis, New York, PP. 228 (1982).
W. R. Blischke; D. N. P Murthy, Warranty Cost Analysis, Marcel Dekker (1993).
W. R. Blischke; D. N. P. Murthy; Product Warranty Handbook, New York, Marcel Dekker, 421-438 (1996).
Y. H. Chien; Optimal age-replacement policy under an imperfect
renewing free-replacement warranty, IEEE Trans. Reliability, 57 (1) 125
-133 (2008).