IJSREG Trion Studio

No Publication Cost

Vol 9, No 3:

subscription

A Composite Class of Ratio Estimators for a Finite Population Mean in Two-Phase Sampling
Abstract
In the present paper, a composite class of ratio estimators is developed for the estimation of mean of a finite population in two-phase sampling by utilizing information on single auxiliary variable. The mean square error (MSE) criterion is used for demonstrating the performance of the proposed class of estimators with respect to the well-known pre-existing estimators. Moreover, a cost function analysis procedure is carried out for obtaining the optimum sample sizes of the first-phase and second-phase samples, along with the optimum MSEs of the proposed class as well as the pre-existing estimators. The MSEs and percent relative efficiencies (PREs) of various estimators have been obtained by conducting an empirical analysis using some real population data sets.
Full Text
PDF
References
  1. A. Fallah; H. Khoshtarkib; Improved Linear Combination of Two Estimators for a Function of Interested parameter. Revista Colombiana de Estadística, 39(2), 229-245 (2016).
  2. A. K. Das; Contributions to the Theory of Sampling Strategies Based on Auxiliary Information. Ph. D. Thesis, Bidhan Chandra Krishi Vishwavidyalaya, West Bengal, India (1988).
  3. B. K. Handique; A Class of Regression-cum-ratio Estimators in Two-Phase Sampling for Utilizing Information from High Resolution Satellite Data, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I(4), 71-76 (2012).
  4. B. N Pandey and V. Dubey; On the Two Phase Modified Ratio Estimator using the Coefficient of Variation of Auxiliary Characteristic. Journal of the Indian Society of Agricultural Statistics, XLI(3) 266-270 (1989).
  5. B. V. Sukhatme and L. Chand; Multivariate Ratio-Type Estimators. Proceedings of American Statistical Association, Social Statistics Section, 927–931 (1977).
  6. B. V. Sukhatme; Some Ratio-Type Estimators in Two-Phase Sampling. Journal of the American Statistical Association, 57(299), 628–632 (1962).
  7. B. V. S. Sisodia and V. K. Dwivedi; A Class of Ratio Product‐Type Estimator in Double Sampling. Biometrical Journal, 24(4), 419-424 (1982).
  8. D. M. Kawathekar and S. G. P.  Ajagaonkar; A Modified Ratio Estimator Based on the Coefficient of Variation in Double Sampling. Journal of Indian Statistical Association, 36(2), 47-50 (1984).
  9. G. Diana and C. Tommasi; Optimal Estimation for Finite population Mean in Two-Phase Sampling. Statistical Methods and Applications, 12(1), 41-48 (2003).
  10. G. K. Vishwakarma and M.Kumar; An Efficient Class of Estimators for the Mean of a Finite Population in Two-Phase Sampling using Multi-Auxiliary Variates. Communications in Mathematics and Statistics, 3(4), 477–489 (2015).
  11. G. K. Vishwakarma and M. Kumar; A New Approach to Mean Estimation using Two Auxiliary Variates in Two-Phase Sampling. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 86(1), 33–39 (2016).
  12. G. K. Vishwakarma; S. M. Zeeshan and M. Kumar; Improved Ratio and Product Type Estimators of Finite Population Mean in Two-Phase Sampling. International Journal of Statistics and Economics, 17(1), 14-21 (2016).
  13. H. P. Singh and G. K. Vishwakarma; Modified Exponential Ratio and Product Estimators for Finite Population Mean in Double Sampling. Austrian Journal of Statistics, 36(3), 217-225 (2007).
  14. H. P. Singh and M. RuizEspejo; Double Sampling Ratio-Product Estimator of a Finite Population Mean in Sample Surveys. Journal of Applied Statistics, 34(1), 71-85(2007).
  15. J. Neyman; Contribution to the Theory of Sampling Human Populations. Journal of American Statistical Association, 33(201), 101-116 (1938)
  16. K. A. Malik and R. Tailor; Ratio Type Estimator of Population Mean in Double Sampling. International Journal of Advanced Mathematics and Statistics, 1(1), 34-39 (2013). 
  17. M. Kumar and A. Tiwari ; A Generalized Class of Estimators of Population Mean in Two-Phase Sampling using Two Auxiliary Variables. International Journal of Mathematics and Statistics, 22(3), 1-10 (2021).
  18. M. Kumar and G. K. Vishwakarma; Estimation of Mean in Double Sampling using Exponential Technique on Multi-Auxiliary Variates. Communications in Mathematics and Statistics, 5(4), 429–445 (2017).
  19. S. K. Agarwal and M. Al Mannai; Linear Combination of Estimators in Probability Proportional to Sizes Sampling to Estimate the Population Mean and Its Robustness to Optimum Value. Statistica, LXIX(1) (2009).
  20. S. K. Srivastava; A Two‐Phase Sampling Estimator in Sample Surveys. Australian Journal of Statistics, 12(1), 23-27 (1970).
  21. S. K. Srivastava; A Generalized Two Phase Sampling Estimators. Journal of the Indian Society of Agricultural Statistics, 33(1), 37-46 (1981).
  22. T. W. Anderson; An Introduction to Multivariate Statistical Analysis. John Wiley and Sons, New York, 1958.
  23. W. G. Cochran; Sampling Techniques. John Wiley and Sons, New York, 1977.

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser