subscription
1. A.J. Smola and B. Scholkopf; A Tutorial on Support Vector Regression. Statistics and Computing, 14(2), 199-122 (2004).
2. A. Kazem; E. Sharifia; F.K. Hussainb; M. Saberi and O.K. Hussain; Support Vector Regression with Chaos-Based Firefly Algorithm for Stock Market Price Forecasting. Applied Soft Computing, 13(2), 947-958 (2013).
3. A. Karatzoglou; D. Meyer and K. Hornik; Support Vector Machines in R. Journal of Statistical Software, 15(9), 1-28 (2006).
4. A.K. Gupta; S.C. Guntuku; R.K. Desu and A. Balu; Optimisation of Turning Parameters by Integrating Genetic Algorithm with Support Vector Regression and Artificial Neural Networks. International Journal of Advanced Manufacturing Technology, 77(1-4), 331–339 (2015).
5. A.M. Deris; A.M. Zain and R. Sallehuddin; (2011) Overview of Support Vector Machine in Modeling Machining Performances. International Conference on Advances in Engineering, Procedia Engineering, 24, 308 – 312.
6. B.E. Erdogan; Prediction of Bankruptcy using Support Vector Machines: An Application to Bank Bankruptcy. Journal of Statistical Computations and Simulation, 12(8), 1543-1555 (2013).
7. B.M. Gupta; S.M. Dhawan and G.M. Mamdapur; Support Vector Machine (SVM) Research in India: A Scientometric Evaluation of India’s Publications Output During 2002-19. Journal of Indian Library Association, 57(3), 12-25 (2021).
8. C. Cortes and V.N. Vapnik; Support Vector Networks. Machine Learning, 20(3), 273–297 (1995).
9. C.C. Chang and C.J. Lin; Training ν-Support Vector Classifiers: Theory and Algorithms. Neural Computation, 13(9), 2119–2147 (2001).
10. C.H. Wu; J.M. Ho and D.T. Lee; Travel-Time Prediction with Support Vector Regression. IEEE Transactions on Intelligent Transportation Systems, 5(4), 276-281 (2004).
11. C. Shoko and C. Sigauke; Short-Term Forecasting of COVID-19 using Support Vector Regression: An Application using Zimbabwean Data. American Journal of Infection Control (2023). DOI: https://doi.org/10.1016/j.ajic.2023.03.010.
12. D.K. Basha and T. Venkateswarlu; Linear Regression Supporting Vector Machine and Hybrid LOG Filter-Based Image Restoration. Journal of Intelligent Systems, 29(1), 1480–1495 (2020).
13. D. Lee; G. Kim and K.E. Lee; Soil Moisture Prediction using a Support Vector Regression. Journal of the Korean Data & Information Science Society, 24(2), 401–408 (2013).
14. F.E.H. Tay and L.J. Cao; A Comparative Study of Saliency Analysis and Genetic Algorithm for Feature Selection in Support Vector Machines. Intelligent Data Analysis, 5(3), 191−209 (2001).
15. F. Kaytez; M.C. Taplamacioglu; E. Cam and F. Hardalac; Forecasting Electricity Consumption: A Comparison of Regression Analysis, Neural Networks and Least Squares Support Vector Machines. International Journal of Electrical Power and Energy Systems, 67(C), 431– 438 (2015).
16. F.R. Hampel; E.M. Ronchetti; P.J. Rousseeuw and W.A. Stahel; Robust Statistics: The Approach Based on Influence Functions. John Wiley & Sons, New York (1986).
17. G. Wang; (2012) Demand Forecasting of Supply Chain Based on Support Vector Regression Method. In International Workshop on Information and Electronics Engineering, Procedia Engineering, 29, 280 – 284.
18. G.W. Flake and S. Lawrence; Efficient SVM Regression Training with SMO. Machine Learning, 46(1-3), 271–290 (2002).
19. G. Camps-Valls; L. Bruzzone; J.L. Rojo-Alvarez and F. Melgani; Robust Support Vector Regression for Biophysical Variable Estimation from Remotely Sensed Images. IEEE Geoscience and Remote Sensing Letters, 3(3), 339-343 (2006).
20. H. Yang; K. Huang; I. King and M.R. Lyu; Localized Support Vector Regression for Time Series Prediction, Neurocomputing, 72(10-12), 2659-2669 (2009).
21. H. Drucker; C.J.C. Burges; L. Kaufman; A. Smola and V. Vapnik; (1996) Support Vector Regression Machines. Proceedings of the 9th International Conference on Neural Information Processing Systems, 155-161.
22. H. Takeda; S. Farsiu and P. Milanfar; Kernel Regression for Image Processing and Reconstruction. Transactions on Image Processing, 16(2), 349-366 (2007).
23. H. Huang; X. Wei and Y. Zhou; An Overview on Twin Support Vector Regression. Neurocomputing, 490, 80-92 (2022).
24. J. Prada; General Noise Support Vector Regression with Non-Constant Uncertainty Intervals for Solar Radiation Prediction. Journal of Modern Power Systems and Clean Energy; 6(2), 268–280 (2018).
25. J. Nayak; B. Naik and H.S. Behera; A Comprehensive Survey on Support Vector Machine in Data Mining Tasks: Applications & Challenges. International Journal of Database Theory and Application, 8(1), 169-186 (2015).
26. J. Ma; J. Theiler and S Perkins; Accurate On-line Support Vector Regression. Neural Computation, 15(11), 2683–2703 (2003).
27. K. Mohammadi; S. Shamshirband; H. Anisi; K.A. Alam and D. Petkovic; Support Vector Regression based Prediction of Global Solar Radiation on a Horizontal Surface. Energy Conversion and Management, 91, 433-441 (2015).
28. M. Bozic and M. Stojanovic; Application of SVM Methods for Mid-Term Load Forecasting. Serbian Journal of Electrical Engineering, 8(1), 73-83 (2011).
29. O.L. Mangasarian and D.R. Musicant; Robust Linear and Support Vector Regression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(9), 1-6 (2000).
30. P.J. Rousseeuw and V. Yohai; Robust Regression by Means of S-Estimators. Robust and Non-Linear Time Series Analysis, 26, 256-272 (1984).
31. P. Borah and D. Gupta; Review: Support Vector Machines in Pattern Recognition. International Journal of Engineering and Technology, 9(3), 43-48 (2017).
32. R.R. Perez and J. Bajorath; Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery. Journal of Computer-Aided Molecular Design, 36, 355-362 (2022).
33. R. Collobert and S. Bengio; SVM Torch: Support Vector Machines for Large-Scale Regression Problems. Journal of Machine Learning Research, 1, 143–160 (2001).
34. S. Balasundaram and Y. Meena; Robust Support Vector Regression in Primal with Asymmetric Huber Loss. Neural Processing Letters, 49(3), 1399-1431 (2019).
35. S.S. Keerthi; S. Shevade; C. Bhattacharyya and K. Murthy; Improvements to SMO Algorithm for SVM Regression. IEEE Transactions on Neural Networks, 11(5), 1188–1193 (2000).
36. S.V. Looy; T. Verplancke; D. Benoit; E. Hoste; G.V. Maele; F.D. Turck and J. Decruyenaere, A Novel Approach for Prediction of Tacrolimus Blood Concentration in Liver Transplantation Patients in the Intensive Care Unit through Support Vector Regression. Critical Care, 11(4), 1-7 (2007).
37. S. Jore and P. R. Badadapure; Remote Sensing Image Segmentation using Linear Regression. International Journal of Engineering Research & Technology, 3(4), 2279-2282 (2014).
38. T.B. Trafalis and H. Ince; (2000) Support Vector Machine for Regression and Applications to Financial Forecasting, Neural Network-IJCNN 2000. Proceedings of the IEEE-INNS-ENNS International Joint Conference, 6, 348−353.
39. T.A. Altameem; V. Nikolic; S. Shamshirband; D. Petkovic; H. Javidnia; M.L.M. Kiah and A. Gani; Potential of Support Vector Regression for Optimization of Lens System. Computer-Aided Design, 62, 57–63 (2015).
40. V. Anandhi and R.M. Chezian; Support Vector Regression in Forecasting. International Journal of Advanced Research in Computer and Communication Engineering, 2(10), 4148-4151 (2013).
41. V.N. Vapnik; S. Golowich and A. Smola; (1997) Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. Proceedings of Advances in Neural Information Processing Systems, 9, MIT Press, Cambridge, 281-287.
42. V. Vapnik; The Nature of Statistical Learning Theory. Springer, New York (1995).
43. V. Yohai; High Breakdown Point and High Efficiency Robust Estimates for Regression. The Annals of Statistics, 15(2), 642-656 (1987).
44. X. Pan; X. Pang; H. Wang and Y. Xu; A Safe Screening Based Framework for Support Vector Regression. Neurocomputing, 287, 163–172 (2018).
45. X. Liu and Y. Zuo; Computing Half-Space Depth and Regression Depth. Simulation and Computation, 43(5), 969-985 (2014).
46. Y. Radhika and M. Shashi; Atmospheric Temperature Prediction using Support Vector Machines. International Journal of Computer Theory and Engineering, 1(1), 1793-8201 (2009).
47. Y. Wang; B. Wang and X. Zhang; (2012) A New Application of the Support Vector Regression on the Construction of Financial Conditions Index to CPI Prediction. Procedia Computer Science, International Conference on Computational Science, ICCS 2012, 9, 1263 – 1272.