M. J. Aghababaei;J. Geoff; L. Chin-Diew; Integer Valued AR(1) with Geometric Innovation, JIRSS, . 11( 2) 173-190(2012).
M. A. Al-Osh; A. A. Alzaid; First-order Integer-Valued
Autoregressive (INAR(1)) Process, Journal of Time Series Analysis and
Econometrics, 9 281-275(1987).
A. Alzaid and M. A Al-Osh; First-order Integer-Valued
Autoregressive (INAR(1)) Process: Distribution and Regression
Properties, Statistica Neerhandica, 42(1) 53- 61(1988).
G.E.P.Box;G. M. Jenkins; Time Series Analysis, Forecasting and Control, Holden-Day, San Francisco; (1970).
W. Fangfang; W. Haowan; Modelling Non-stationary Multivariate
Time Series of Counts via Common factors, Journal of the Royal
Statistical Society:Series B, 80(4) 769 -791 (2018).
K.R. Freeland; Statistical Analysis of Discrete Time Series
with Application to the Analysis of Workers’ Compensation Claims Data,
Thesis, The University of British Columbia(1998).
M.A. Jazi; M. H. Alamatsaz; Two New Thinning Operator and
their Applications, Global Journal of Pure and Applied Mathematics, 8(1)
13 -28(2012).
V. Jowaheer;B. C. Sutradhar; (2005) On AR(1) versus MA(1)
models for non-Stationary time series of Poisson count. Proceedings of
the 8th WSEAS International Conference on Applied Mathematics,359 -362.
L.A.Klimko; P.I. Nelson; On the Conditional Least Squares
Estimation for Stochastic Processes, The Annals of Statistics, 6( 3)
629-642(1978).
B.Marcelo;L.P.V.Klaus; A. R.Valerio; I.Marton; A Poisson
INAR(1) Process with a Seasonal Structure,Journal of Statistical
Computing, and Simulation,(2015) doi:10.1080/00949655.2015.1015127.
E. Mckenzie; Some Simple Models for Discrete Variate Time Series, Water Resourses Bullettin, 21 645 – 650(1985).
E.Mckenzie; Autoregressive Moving Average Process with
Negative Binomial Thinning and Geometric Marginal Distribution, Advanced
Applied Probability,18 679 – 705 (1986).
A.S.. ;M. M. ; H.S. Bakouch; A Combined Geometric INAR(p)
Model Based on Negative Binomial Thinning, Mathematical and Computer
Modelling, 55 1665 -1672(2012).
A.S. ;M.M. ;A.D. ; A Mixed Thinning Based Geometric INAR(1) Model, Filomat, 13(13) 4009-4022(2017).
M.M. Risti ; H.S. Bakouch;A.S. ;A New Geometric First Order
Integer-Valued Autoregressive (NGINAR(1)) Process, Journal of
Statistical Inference, 139 2218-2226(2009).
M.E. Silva; V.C. Oliveira; Difference Equations for the Higher
Order Moments and Cummulants of the INAR(1) Model, Journal of Time
Series Analysis, 25 317-333(2004).
F.W. Steutel;K. van Harn; Discrete Analogues of Self–decomposability and Stability, Annals of Probability, 7(3) 803 – 899(1979).
S. Tian;D. Wang; S. Cui; A Seasonal Geometric INAR(1) Process
Based on Negative Binomial Thinning Operator, Statistical Papers(2018)
doi: 101007/s00362-018-1060-7.
C.H. Weiß; Thinning Operations for Modelling Time Series of Counts–A Survey, Advances in Statistical Analysis, 92319–341(2008).