D. Donahoe; K. Zhao; S. Murray; R.M. Ray; Accelerated Life
Testing Encyclopedia of Quantitative Risk Analysis and
Assessment.doi:10.1002/9780470061596.risk0452 (2008).
E.A.Elsayed;Accelerated Life Testing Handbook of Reliability Engineering, 415–428 doi:10.1007/1-85233-841-5_22 (2003).
N.R. Mann; R.E. Schafer; N.D. Singpurwalla; Methods for
Statistical Analysis of Reliability and Life Time Data, New York, Wiely
(1974).
R.W. Hertzberg; Deformation and Fracture Mechanics of Engineering Materials, 2nd ed., USA (1977).
R.D. Gupta; D. Kundu; Generalized Exponential Distribution,
Statistical Inferences, Journal of Statistical Theory and Applications,
01101-118 (2002).
R.D. Gupta; D. Kundu; Generalized exponential distribution:
different methods of estimation, J. Statist. Comput.Simul., 69 315-337
(2001a).
R.D. Gupta; D. Kundu; Exponentiated exponential family: an
alternative to gamma and Weibull distributions, Biometrical J., 43
117-130 (2001b).
R.D. Gupta; D. Kundu; Generalized exponential distribution, Austral & New Zealand J. Statist., 41 173-188 (1999).
M.Z. Raqab; Inference for generalized exponential distribution
based on record statistics, Journal of Statistical Planning ans
Inference, 104 339-350 (2002).
M.Z. Raqab; M. Ahsanullah, Estimation of the location and
scale parameters of the generalized exponential distribution based on
order statistics, Journal of Statistical Computation and Simulation, 69
109-124 (2001).
G. Zheng; Fisher information matrix in type -II censored data
from exponentiated exponential family, Biometrical Journal, 44 353 – 357
(2002).
De Souza; I. Daniel; Accelerated Life Testing Models, In:
ORSNZ99 onference,1999, Hamilton. Proceedings of the ORSNZ99Conference.
Hamilton: University of Waikato, NZ, 1999, 1 245-254 (1999).
De Souza; I. Daniel; Physical Acceleration Life Models, In:
XIII CongresoChileno de IngenieriaElectrica, 1999, Santiago, Anais del
XIII CongresoChileno de IngenieriaElectrica,Santiago: Universidad de
Santiago de Chile, 1999, 1 09-14 (1999a).
P. Erto; New Practical Bayes Estimators for the 2-Parameter
Weibull Distribution, IEEE Transactions on Reliability, 31(2) 194-197
(1982).
N.R. Mann; Point and Interval Estimation Procedure Procedures
for the Two-Parameter Weibull and Extreme-Value Distributions,
Technometrics, 10(2) 231-256 (1968).
A.S. Papadopoulos; C.P. Tsokos; Bayesian Confidence Bounds for
the Weibull Failure Model. IEEE Transactions on Reliability, 24(1)
21-26 (1975).
R.M. Soland; Bayesian Analysis of the Weibull Process with
Unknown Scale and Shape Parameters, IEEE Transactions on Reliability,
R-18( 4) 181-184 (1969).
R.F. Tate; Unbiased Estimation Functions of Location and Scale parameters, Ann. Math. Statistics, 30 341-366 (1959).
De Souza; I. Daniel; Sequential Life Testing with a Truncation
Mechanism for an Underlying Three-Parameter Weibull Model, Icheap-6,
Chemical Engineering Transactions, 3 557-562 (2003), SauroPierucci (ed),
Pisa, Italy, ENGEVISTA, 7(1) 55-62 (2005).
De Souza; I. Daniel; Application of a Sequential Life Testing
with a Truncation Mechanism for an Underlying Three-Parameter Weibull
Model, ESREL 2004 – PSAM 7Conference, Spitzer, Schmoker and Dang (eds.),
Berlin, Germany, 14 – 18 June 2004, 3 1674-1680, Springer-Verlag
publishers (2004).
De Souza; I. Daniel; Accelerated Life Testing Applied to
Metallurgical Products with an underlying three-parameter inverse
Weibull Model, Congreso Conamet/SAM (2004).