Analysis of the VGG19 Model for Malaria Parasite Detection
Abstract
Malaria is transmitted by female anopheles mosquitoes harboring the plasmodium bacteria. The conventional diagnosis of malaria infection involves an expert's manual detection of parasitized cells. The accuracy of detection depends upon the quality of thick blood smears and the expertise of a trained microscopist in counting and classifying the infected and uninfected cells in those blood smears. This approach is error-prone and time- consuming. Computer-aided diagnostic methods have proven to be more accurate than traditional approaches. This paper analyses the VGG19 model for the automated detection of malaria parasites. The testing and validation accuracy of the VGG19 model is found to be 89.40% and 89.90%, respectively.
References
1. A. B. Bosco; J. I. Nankabirwa; A. Yeka; S. Nsobya; K. Gresty; K. Anderson; P. Mbaka; C. Prosser; D. Smith; J. Opigo; R. Namubiru; E. Arinaitwe; J. Kissa; S. Gonahasa; S. Won; B. Lee; C. S. Lim; C. Karamagi; Q. Cheng; J. K. Nakayaga and M. R. Kamya; Limitations of Rapid Diagnostic Tests in Malaria Surveys in Areas with Varied Transmission Intensity in UGANDA 2017-2019: Implications for Selection and Use of HRP2 RDTs. PLoS One, 15(12), 1-19 (2020).
2. A. Molina; J. Rodellar; L. Boldú; A. Acevedo; S. Alferez and A. Merino; Automatic Identification of Malaria and Other Red Blood Cell Inclusions using Convolutional Neural Networks. Computers in Biology and Medicine, 136, Article Id 104680 (2021)
3. A. Moody; Rapid Diagnostic Tests for Malaria Parasites. Clinical Microbiology Reviews, 15(1), 66-78 (2002).
4. J. A. Quinn; R. Nakasi; P. K. B. Mugagga; P. Byanyima; W. Lubega and A. Andama; (2016) Deep Convolutional Neural Networks for Microscopy-Based Point of Care Diagnostics. Machine Learning for Healthcare Conference, 271-281.
5. J. Pardede; I. A. Dewi; R. Fadilah and Y. Triyani; Automated Malaria Diagnosis using Object Detection Retina-net Based on Thin Blood Smear Image. Journal of Theoretical and Applied Information Technology, 98(5), 757-767 (2020)
6. K. Simonyan and A. Zisserman; (2014) Very Deep Convolutional Networks for Large-scale Image Recognition. Conference Paper at ICLR 2015, arXiv Preprint, 1409-1556.
7. M. Mariki; E. Mkoba and N. Mduma; Combining Clinical Symptoms and Patient Features for Malaria Diagnosis: Machine Learning Approach. Applied Artificial Intelligence, 36(1), 1-25 (2022).
8. M. Turuk; R Sreemathy; S. Kadiyala; S. Kotecha and V. Kulkarni; CNN Based Deep Learning Approach for Automatic Malaria Parasite Detection. IAENG International Journal of Computer Science, 49(3), 1-9 (2022).
9. N.K.KumarandK.T.Sikamani;AnEfficientApproachforMalarialEpidemicPrognosisusingMachine Learning Classifiers. Indian Journal of Computer Science and Engineering (IJCSE), 13(1), 157–169 (2022).
10. P. A. Pattanaik; T. Swarnkar and D. Swain; Deep Filter Bridge for Malaria Identification and Classification in Microscopic Blood Smear Images. International Journal of Advanced Intelligence Paradigms, 20(1-2), 126 -137 (2021).
11. T. Fatima and M. S. Farid; Automatic Detection of Plasmodium Parasites from Microscopic Blood Images. Journal of Parasitic Diseases, 44(1), 69-78 (2020).
12. World Health Organization. (2022). World Malaria Report 2022, Geneva.