IJSREG Trion Studio

No Publication Cost

Vol 7, No 1 :

openaccess

Baye’s Estimation of the Parameters and Reliability Function of Two-Parameter Weibull Distribution
Vinod Kumar , Himanil Joshi , Jitendra Kumar
Abstract

In this paper, Baye’s estimators of the shape parameter (α), scale parameter (β) and reliability function of two-parameter Weibull distribution have been obtained under different priors by using squared error loss functions (SELF). A comparison of the two methods has been made and the results are illustrated using simulation for random samples of different sizes drawn from the two-parameter Weibull distribution with known values of shape parameter (α) and scale parameter (β). A real dataset has also been used to illustrate the results.
Full Text
PDF
References

B. Abbasi;A.H.E. Jahromi;J. Arkat; M. Hosseinkouchack; Estimating the Parameters of Weibull Distribution using Simulated Annealing Algorithm, Applied Mathematics and Computation, 183 85–93 (2006).
B.N. Pandey; N. Dwivedi; P. Bandyopadhyay;Comparison between Bayesian and Maximum Likelihood Estimation of Scale Parameter in Weibull Distribution with Known Shape under LINEX Loss Function, Journal of Scientific Research, 55 163-172(2011).
C.L. Huynh;S.K. Sinha; Z.X. Xiong; Large-Sample Estimation of Reliability under the Exponential Distribution on Life Testing, IEEE Transactions on Reliability, 43(2) 270-274(1994).
D. Kundu; A.K. Gupta; On Bivariate Inverse Weibull Distribution, Brazilian Journal of Probability and Statistics, 31(2) 275-302(2010).
D. Kundu; R.D. Gupta; Estimation of P(Y
E.J. Green;F.A. RoeschJr;A.F. Smith; W.E. Strawderman; Bayesian Estimation for the Three-Parameter Weibull Distribution with Tree Diameter Data, Biometrics, 50(1) 254-269(1994).
L. Tierney; J.B. Kadane; Accurate Approximations for Posterior Moments and Marginal Densities, Journal of the American Statistical Association, 81(393) 82-86 (1986).
N.P. Jewell; Mixtures of Exponential Distributions,The Annals of Statistics, 10 (2) 479-484(1982).
P. Bhattacharya; A Study on Weibull Distribution for Estimating the Parameters, Journal ofApplied Quantitative Methods, 5(2)234-241(2010).
R.L. Smith; J.C. Naylor; A Comparison of Maximum Likelihood and Bayesian Estimators for the Three-Parameter Weibull Distribution, Appl. Stat., 38 358–369 (1987).
V. Kumar; S. Gupta; Reliability and Hazard Rate Estimation of a Life Testing Model, Journal of Reliability and Statistical Studies, 3(2) 103-110(2010).
Y.K. Chu; J.C. Ke; Computation Approaches for Parameter Estimation of Weibull Distribution, Mathematical and Computational Applications, 17(1)39-47(2012).

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser