IJSREG Trion Studio

No Publication Cost

Vol 8, No 1:

openaccess

D-Optimal Bayesian Designs for Beta Regression Model
Poonam Singh , Ashok Kumar
Abstract
Bayesian optimal design approach uses some prior distribution of the unknown parameters of the model to obtain optimal designs. In this paper uniform and beta priors distributions are considered for unknown parameters of the model and the genetic algorithm is applied to obtain D-optimal Bayesian designs for beta regression model. The results obtained are useful in industry and medical fields.
Full Text
PDF
References
M. Aminnejad; H. Jafari; Bayesian A-and D-optimal designs for gamma regression model with inverse link function, Communications in Statistics- Simulation and Computation, 46(10) 8166-8189 (2017).
J. O. Berger; Statistical Decision Theory and Bayesian Analysis, Springer, New York, (1985).
K. Chaloner; K. Larntz; Optimal Bayesian designs applied to logistic regression experiments, Journal of Statistical Planning and Inference, 21191-208 (1989).
H. Chernoff; Locally optimal designs for estimating parameters, Annals of Mathematical Statistics, 24(4) 586–602 (1953).
D. A. Coley; An Introduction to Genetic Algorithm for Scientists and Engineers, World Scientific Publishing Co., Singapore, (1999).
S. Ferrari; F. Cribari-Neto; Beta regression for modelling rates and proportions, Journal of Applied Statistics, 31(7) 799-815 (2004).
J. Kiefer; Optimum experimental designs, Journal of the Royal Statistical Society: Series B, 21(2) 272-304 (1959).
J. Kiefer; J. Wolfowitz; Optimum designs in regression problems, The Annals of Mathematical Statistics, 30(2) 271-294 (1959).
D. V. Lindley; Bayesian Statistics-A Review, SIAM, Philadelphia, (1972).
J. A. Nelder; R. Mead; A Simplex method for function minimization, The computer journal, 7(4) 308-313 (1972).
J. P. Rydlewski; Beta-regression model for periodic data with a trend, Univ. Iage. Acta. Math, 45 211-222 (2007).
A. B. Simas; W. Barreto-Souza; A. V. Rocha; Improved estimators for a general class of beta regression models, Computational Statistics & Data Analysis, 54(2) 348-366 (2010).
P. Singh; A. Kumar; Optimal designs for beta regression model with random intercept, International Journal of Agricultural Statistical Sciences, 15(1)135-141 (2019).
C. E. Shannon; A mathematical theory of communication, Bell System Technical Journal, 27 379–423 (1948).
Y. Zhang; K. Ye; Bayesian D-optimal designs for Poisson regression models, Communications in Statistics-Theory and Methods, 43(6) 1234-1247 (2014).
Y. Wu; V. V. Fedorov; K. J. Propert; Optimal design for dose response using beta distributed responses. Journal of Biopharmaceutical Statistics, 15(5) 753-771 (2005).
S. Latif; M. Z. Yab; D-optimal designs for a beta regression with single predictor. Journal of Statistical Computation and Simulation, 85(9) 1709-1724 (2015).

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser