-
F. Kizilaslan; M. Nadar; Estimation of
reliability in a multicomponent stress-strength
model based on bivariate Kumaraswamy
distribution, Statistical Papers, 59(1), 307-340
(2018).
-
G.K. Bhattacharyya; R.A. Johnson; Estimation
of reliability in a multicomponent stress-
strength model, Journal of American Statistical
Association, 69(348),966-970 (1974).
12. Ghosh; G.G. Hamedani; Gamma-
Kumaraswamy distribution in reliability
analysis: properties and applications,
Hokimoto, T. (Ed.), Advances in Statistical
Methodologies and Their Application to Real
Problems, IntechOpen, Rijeka, chapter 6, 123-
141 (2017).
13.J.D. Church; B. Harris; The estimation of
reliability from stress-strength relationships,
Technometrics, 12(1),49-54 (1970).
14. K. Karakaya; I. KINACI; K. U. Ş. Coşkun; Y.
AKDOĞAN; On the DUS Kumaraswamy
Distribution, Istatistik Journal of The Turkish
Statistical Association, 13(1), 29-38 (2021).
15. K.S. Deepthi; V.M. Chacko; An upside-down
bathtub-shaped failure rate model using a DUS
transformation of Lomax distribution, Lirong
Cui, Ilia Frenkel, Anatoly Lisnianski (Eds),
Stochastic Models in Reliability Engineering,
Taylor & Francis Group, Boca Raton, CRC
Press, chapter 6,81-100 (2020).
16.M. Elgarhy; M.A. Ul Haq; Q. Ul Ain;
Exponentiated generalized Kumaraswamy
distribution with applications, Annuals of Data
Science, 5(2), 273-292 (2018).
17.M. Garg; On Distribution of Order Statistics
from Kumaraswamy Distribution, Kyungpook
Mathematical Journal, 48(3),411-417 (2008).
18. M. Nadar; A. Papadopoulos; F. Kizilaslan;
Statistical analysis of Kumaraswamy’s
distribution based on record data, Statistical
Papers, 54(2), 355-369 (2013).
19. M. V. Aarset; How to identify a bathtub hazard
rate, IEEE Transactions on Reliability, 36(1),
106-108 (1987).
20.P. Kavya; M. Manoharan; On a Generalized
lifetime model using DUS transformation, V.
Joshua; S. Varadhan, V. Vishnevsky, (Eds),
Applied Probability and Stochastic Processes,
Infosys Science Foundation Series, Springer,
Singapore, 281-291 (2020).
21.P. Kumaraswamy; A generalized probability
density function for double-bounded random
process, Journal of Hydrology, 46(1), 79-88
(1980).
22. P.A. Mitnik; New properties of the
Kumaraswamy distribution, Communications
in Statistics-Theory and Methods,42(5), 741-
755 (2013).
23. P.A. Mitnik; S. Baek; The Kumaraswamy
distribution; median-dispersion re-
parameterizations for regression modeling and
simulation-based estimation, Statistical Papers,
54(1), 177-192 (2013).
24. R. E. Barlow; F. Proschan; Statistical Theory
of Reliability and Life Testing, New York:
Holt, Rinehart and Winston, (1975).
25. S. Nadarajah; H.S. Bakouch; R. A. Tahmasbi;
Generalized Lindley distribution, Sankhya B,
73, 331-359 (2011)
26. S. Nadarajah; On the distribution of
Kumaraswamy, Journal of Hydrology, 348(3),
568-569 (2008).
27.S.K. Maurya; A. Koushik; S.K. Singh; U.
Singh; A new class of exponential transformed
Lindley distribution and its application to Yarn
data, International Journal of Statistics and
Economics, 18(2), (2016).
28. T. Kayal; Y.M. Tripathi; S. Dey; S.J. Wu; On
estimating the reliability in a multicomponent
stress-strength model based on Chen
distribution, Communications in Statistics-
Theory and Methods, 49(10), 2429-2447
(2020).
29. T. Xavier; J.K. Jose; A study of stress-strength
reliability using a generalization of power
transformed half-logistic distribution,
Communications in Statistics-Theory and
Methods, 1-17 (2020).
30. V.K. Sharma;S. Dey; Estimation of reliability
of multicomponent stress-strength inverted
exponentiated Rayleigh model, Journal of
Industrial and Production Engineering, 36(3),
181-192 (2019).
31.Z. Pakdaman; J. Ahmadi; Point estimation of
the stress-strength reliability parameter for
parallel system with independent and non-
identical components, Communications in
Statistics-Simulation and Computation, 47(4),
1193-1203 (2018).