References
1. H. Bhavsar and M. H. Panchal; A Review on Support Vector Machine for Data Classification.
International Journal of Advanced Research in Computer Engineering & Technology, 1(10), 185-189
(2012).
2. O. Chapelle; V. Vapnik and O. Bousquet; Choosing Multiple Parameters for Support Vector Machines.
Machine Learning, 46(1), 131-159 (2002).
3. N. Cristianini and J. Kandola; On Kernel Target Alignment. In Proceedings of Neural Information
Processing Systems, MIT Press, Cambridge, MA, 367-373 (2002).
4. Y. Fu and D. Ren; Kernel Function and Its Parameters Selection of Support Vector Machines, Science and
Technology Innovation Herald, 6-7 (2010).
5. J. D. F. Habemma; J. Hermans and K. Van den Broek; Stepwise Discriminant Analysis Program using
Density Estimation. In Proceedings in Computational statistics, 101–110 (1974).
6. D. J. Hand; F. Daly; K. McConway; D. Lunn and E. Ostrowski; A Handbook of Small Data Sets. Chapman
& Hall, Data set, 285- 229 (1993).
7. S. S. Keerthi and C. Lin; Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel..
Neural Comput., 15(7), 1667–1689 (2003).
8. X. Liu; B. Luo and Z. Qian; Optimal Model Selection for Support Vector Machines. Journal of Computer
Research and Development, 42(4), 576-581 (2005).
9. V. N. Vapnik; The Nature of Statistical Learning Theory. Translated by Zhang Xuegong, Beijing:
Tsinghua University Press, (2000).
10. T. Wu; Kernels’ Properties, Tricks and Its Application on Obstacle Detection, Changsha: National
University of Defense Technology, (2003).
11. Z. Yang; Kernel-Based Support Vector Machines. Computer Engineer and Applications, 44( 33), 1-6
(2008).
12. Liu Zhiliang and Xu Hongbing; Kernel Parameter Selection for Support Vector Machine Classification.
Journal of Algorithms & Computational Technology, 8(2), 163-177 (2013).
13. S. Zhu and R. Zhang; Research for Selection of Kernel Function used in Support Vector Machine. Science
Technology and Engineer, 8(16), 4513-4517 (2008).