IJSREG Trion Studio

No Publication Cost

Vol 7, No 3 :

subscription

HarrisGeneralizedRayleighDistributionanditsApplicationsin Industrial Reliability TestPlan
Albin Paul , K. K Jose
Abstract
This article deals with the Harris Generalized Rayleigh Distribution which is obtained by takingRayleighdistributionasthebaselinedistributionandbyusingHarrisgeneralizationmethod. Some statistical and reliability properties of the new family is discussed. The maximum likelihood estimation of unknown parameters and a simulation study with a real data analysis is carried out to illustrate that the new distribution is more flexible than the baseline distributions. Also we developed an industrial reliabilitytestplanforacceptanceorrejectionofalotofproductssubmittedforinspectionwithlifetime following Harris generalized Rayleigh distribution.
Full Text
PDF
References
A.E. Gomes; C.Q. da-Silva; G.M. Cordeiro; G.M. E.M.M. Ortega; A new lifetime model: The Kumaraswamy generalized Rayleigh distribution, Journal of Statistical Computation and Simulation 84 290–309 (2014).
B.C. Arnold; N. Balakrishnan N; H.N.: Nagaraja; A First Course in Order Statistics, Wiley, New York (1992)
E.T. Lee; J.W. Wang; Statistical Methods for Survival Data Analysis, 3rd ed., Wiley, New York (2003).
G. M. Cordeiro; C.T. Cristino; M.H., Elizabeth; E.M.M. Ortega; The beta generalized rayleigh distribution with applications to lifetime Data, Statistical Papers 54 133–161 (2013).
G.S. Rao; M.E.Ghitany ; R.R.L. Kantam; Acceptance sampling plans for marshall-olkin extended lomax distribution, International journal of Applied Mathematics 21(2) 315–325 (2008).
K. Rosaiah; R.R.L. Kantam; Acceptance sampling based on the inverse rayleigh distribution. Economic Quality Control 20(2) 277-286 (2005) DOI: 10.1515/EQC. 2005. 277.
K.K. Jose; , R. Sivadas; Negative binomial marshall-olkin rayleigh distribution and its applications, Economic Quality Control 30(2) 118–173.
K.K. Jose; L. Tomy; S.P. Thomas; On generalizations of the weibull distribution and its application in quality control, Stochastics and Quality Control 33(2) 113–124 (2018).
K.K. Jose; A. Paul; Reliability test plans for percentiles based on the harris generalized linear exponential distribution, Stochastics and Quality Control 33(1) 61–70 (2018).
K.K. Jose; J. Joseph; Reliability test plan for the gumbel-uniform distribution, Stochastics and Quality Control 33(1) 71–81 (2018).
K.K. Jose; S. Rani; Marshall - Olkin morgenstern-weibull distribution: generalisations and applications, Economic Quality Control 28(2) 105–116 (2013).
L. Aly Benkherouf; A new family of distribution based on probability generating functions, Sankhya C - Applied and Interdisciplinary Statistics 73(1) 70–80 (2011).
Lawless; Statistical Models and Methods for Lifetime Data, John Wiley & Sons Inc. New York (1982).
M .Shaked; J.G. Shanthikumar; Stochastic Orders, 24. Springer, New York (2007).
R.R.L. Kantam; K. Rosaiah; G.S .Rao: Acceptance sampling based on life tests: Log-logistic model, Journal of Applied Statistics 28 121-128 (2001).
S. Kotz; S. Nadarajah; Extreme value theory, Theory and Applications. Singapore: World Scientific (2001).
T.E. Harris; Branching processes, The Annals of Mathematical Statistics 19 474–494 (1948)
T.R.Tsai; S.J. Wu; Acceptance sampling plans based on truncated life test for generalized rayleigh distribution, Jouranal of Applied Statistics 24 595–600 (2006). DOI:10.1080/02664760600679700.

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser