IJSREG Trion Studio

No Publication Cost

Vol 7, No 2 :

openaccess

Inference under Progressive Interval Censoring for Pareto Competing Risk Failure Model
Neha K. Gadhvi
Abstract
In the reliability analysis failure of individuals or items may be attribute table to more than one cause of factor. Competing risk failure model is useful for the analysis under such situation. In this paper Pareto model is considered as life time under competing risks. The causes of failures are assumed independent. Inference is made under the type-I progressive interval censoring scheme. The method of maximum likelihood and Bootstrap are used for point estimation and interval estimation. Estimation is carried out for the parametersand survival function of the computing risks failure model. A simulated example is provided and illustrates the results obtained. Simulation study is carried out to check the behavior of the estimators.
Full Text
PDF
References

C. Arnold; Pareto distributions In: Statistical distributions in scientific work, International Publishing House, Burtonsville, MD,(1983).
C. Arnold; N. Balakrishnan; Pareto Distributions, International Publishing house, Fairland, Maryland,1989.
D.S. Chareti;A. H. Morre;J. W. Cotman; A comparison of estimation techniques for the three parameters Pareto distribution, Communications in Statistics-Computation and Simulation, 17(4), 1395-1407(1988).
G. Hoel; A representation of mortality data by competing risks, Biometrics,28,475- 488(1972):
H.AbdEllah; Bayesian one sample prediction bounds for the Lomax distribution, Indian Journal of Pure and Applied Mathematics, 34,101-109(2003).
H.AbdEllah; Comparison of estimates using record statistics from Lomax model-Bayesian and non Bayesian approaches, Journal of Statistical Research and Training Centre,3,139-158(2006).
J. W. Boag; Maximum likelihood estimates of proportion of patients cured by cancer therapy, Journal of Royal Statistical Society, B-11,15-44(1989).
J. Scallan; Regression modeling of interval-censored failure time data using the Weibull distribution, Journal of Applied Statistics,26(5),613-618(1999).
K. Podder;M. K. Roy; K. J. Bhuiyan; A. Karim; Minimax estimation of the parameter of the Pareto distribution under quadratic and MLINEX loss functions, Pakistan Journal of Statistics,20(1),137-149(2004).
M. A.W. Mahmmad; A.A. Soliman; A.H.Ahd.Ellah; R. M. El-Sageer; Bayesian estimation using MCMC approach based on progressive first failure censoring from generalized Pareto distribution, American Journal of Theoretical and Applied Statistics, 2(5),128-141(2013).
M. B. Rao;Interval-censored Type-II plan - a knell of the traditional Type-II plan? In IISA International conference,Abstracts, McMaster University, 55, (1998).
M. Hossain; W. J. Zimmer; Comparisons of methods of estimation for a Pareto distribution of the first kind,Communications in Statistics-Theory and Methods, 29(4),859-878(2000).
M. N. Patel; A. V. Gajjar; Maximum likelihood estimation in compound exponential failure model with changing failure rates from Type-I Progressively censored and group censored samples, Communications in Statistics-Theory and Methods,21(1),2899-2908(1992).
N. K. Gadhvi; G. C. Bhimani; Inference Under Progressive Interval Censoring for Discrete Competing Risk Failure Model, Mathematical Theory and Modeling, 5(2),153-161(2015).
N. K. Gadhvi; G. C. Bhimani; Inference for Exponential Competing Risk Failure Model, Journal of Advanced Statistics, 1(2),76-86(2016).
N.K. Gadhvi; Inference Under Progressive Interval Censoring for power function Competing Risk Failure Model, Think India Journal, 22(10),2294-2307(2019)a.
N. K. Gadhvi; Inference Under Progressive Interval Censoring for Rayleigh Competing Risk Failure Model, Think India Journal,22(10),2308-2320(2019)b.
N. W. Patel; and M. N. Patel; Maximum likelihood estimation in compound geometric failure model with changing parameters from Type-I two-stage Progressively censored and group censored samples, Communications in Statistics-Theory and Methods,36,2367-2375(2007).
P. M. Odell; K. M. Anderson; R. B. D’agostino; Maximum likelihood estimation for interval censored data using a Weibull based accelerated failure model, Biometrics,48,951-959(1992).
R.Aggarwala; Progressive interval censoring: Some mathematical results with applications to inference, Communicationsin Statistics-Theory and Methods, 30(8&9), 1921- 1935(2001).
R.Aggarwala, and A. Childs; Conditional inference for the parameters of Pareto distribution when observed samples are progressively censored, Advances in Stochastic Simulation Methods, Boston. (1999).
R. G. Miller;G. Gong; and A. Munoz; Survival Analysis, John Wiley & Sons, New York, (1981).
R. Rezai;R. Tahmushi;M. Mahmoodi; Estimation of P(Y>X) for generalized Pareto distribution, Journal ofStatistical Planning and Inference,140,480-491(2010).
S. Peck; Transistor failure studies at accelerated levels, IEEE, Bell Telephones Laboratories, Pennsylvania, Press, Pacific Grove, C.A.(1966)
S.O. Samuelson; J. Kongerud; Interval-censoring longitudinal data of respiratory of methods, Statistics in Medicine, 13,1771-1780(1994).
T. J. Boardman; P. J. Kendell; Estimation in compound failure models, Technometrics, 12,891-908(1970).

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser