A. Elsayed; A.N.I. Sahar; U. M. R. Noha; Discrimination
between Weibull and Log-Logistic Distributions, International Journal of
Innovative Research in Science, Engineering and Technology, 2 3358-3371
(2013).
A. Ragab; J. Green; On Order Statistics from the Log-Logistic
Distribution and their Properties, Communications in Statistics-Theory
and Methods, 13 2713-2724 (1984).
A.Fahim; M. Smai; Fitting the Log-Logistic Distribution by Generalized Moments, Journal of Hydrology, 328 694-703 (2006) .
A. Renyi; On Measures of Entropy and Information Proceedings
of the Fourth Berkeley Symposium on Mathematics, Statistics and
Probability, University of California, 547-561 (1961).
B. Devi; P.Kumar; K. Kour; Entropy of Lomax Probability
Distribution and its Order Statistic, International Journal of
Statistics and System, 12(2) 175-181 (2017) .
B. Rannaby; The Maximum Spacing Method: An Estimation Method
Related to Maximum Likelihood, Scandinavian Journal of Statistics, 11(2)
(1984) .
B. K. Shah;P.H. Dave; A Note on Log-Logistic Distribution, Journal of the MS University of Baroda, 2 15-20 (1963) .
C. E. Shannon; A Mathematical Theory of Communication, Bell System Technical Journal, 27 379-423 (1948) .
C. Tsallis; Possible Generalization of Boltzmann-Gibbs statistics, Journal Statistical Physics, 52 479-487 (1988).
F. Coolen; M. J. Newby; A note on the use of the Product of
Spacing in Bayesian Inference, Kwantitatieve Methoden, 37 19-32 (1991).
D. S. Hooda; P. Kumar; Generalized Residual Entropies in
Survival Analysis, Journal of Applied Probability and Statistics, 2
241-249 (2007).
D.S.Hooda; D.K. Sharma; On Characterization of Joint and
Conditional Exponential Survival Entropies, International Journal of
Statistics and Reliability Engineering, 6(1) 29-36 (2019 ).
E.C. David; E. Muhammad; Some useful Properties of
Log-Logistic Random Variables for Health Care Simulations. International
Journal of Statistics in Medical Research, 4 79-86 (2015).
F. Ashkar; S. Mahdi; Fitting the Log-Logistic Distribution by Generalized Moments, Journal of Hydrology, 238 694-703 (2006).
H.L. Harter; A.H. Moore; Maximum Likelihood Estimation of the
Parameters of Gamma and Weibull Populations from Complete and from
Censored Samples, Technometrics, 7(4) (1965) .
H.N. Nagaraja; P.K. Sen;D.F. Morrison; Statistical Theory and
Applications: Paper in Honour of Herbert A. David. Springer, New York
(1996) .
I.W. Burr; Cumulative Frequency Functions.Annals of Mathematical and Statistics,13 215-23 (1942).
J. Havrda; F. Charvat; Quantification Methods of
Classification Process Concept of structure β entropy, Kybernetika, 3
30-35 (1967).
J. N. Kapur; H. K. Kesavan; Entropy Optimization Principle with Applications, Acedmic Press, San Diego, (1992).
K. Adamidis; S. Loukas; A Life Time Distribution with Decreasing Failure rate, Statistical Probability, 39 35-42 (1998).
K. Ghosh; R.S. Jammalamadaka; A General Estimation Method
using Spacings, Journal of Statistical Planning and Inference, 93 71-82
(2001).
K.U.Coskun; F.K. Mehmet; Estimation of Parameters of the
Log-Logistic Distribution based on Progressive Censoring using the EM
Algorithm, Hacettepe Journal of Mathematics and Statistics, 35 203-211
(2006).
D. L. Fitgerald; Maximum product spacings estimators of
generalized Pareto and log-logistic distribution, Stochastic Hydrology
and Hydraulics, 10 1-15 (1996).
M. A. Nielsen; Parameter Estimation for the Two-Parameter
Weibull Distribution, All Theses and Dissertations.
https://scholarsarchive.byu.edu/etd/2509(2011).
M.D. Akhtar; A.K. Athar; Log-Logistic Distribution as a
Reliability Model: A Bayesian Analysis, American Journal of Mathematics
and Statistics, 4 16-170 (2014).
M. Havrda; F. Charvat; Quantification Method of Classification
Processes: Concept of Structural Alpha-Entropy, Kybernetica, 3 30-35
(1967).
M. M. Ali; A. H. Khan; On Order statistics from the
Log-Logistic Distribution, Journal of Statistical Planning and
Inference, 17 103-108 (1987).
M. M. Shoukri; Sampling Properties of Estimator of the
Log-Logistic Distribution with Application to Canadian Precipitation
Data, Canadian Journal of Statistical,16 223-236 (1988).
N.Balakrishnan; H.J. Malik;S. E. Ahmed; Recurrence Relation
and Identities for Moments of Order Statistics, II: Specific Continuous
Distribution, Communication Statistics-Theory and Methods,17(8)
2657-2694 (1988).
N. Balakrishnan; C.R. Rao; Order Statistics: Application. Elsevier, New York, 17 (1998).
N.L. Johnson; S. Kotz;N. Balakrishnan; Continuous Univariate Distributions. 2, ed.2, New York: John Wiley and Sons (1995).
P. R. Fisk; The Graduation of Income Distribution, Econometrica, 29(2) 171-185 (1961).
P.Y. Lesitha; Thomas; Estimation of the Scale Parameter of a Log-Logistic Distribution, Metrika, 76 427 - 448 (2012).
R. C. H. Cheng; N.A.K. Amin; Maximum Product of Spacing
Estimation with Application to theLognormal Distribution,University of
Wales IST.Math Report, University of Wales Institute of Science and
Technology, Cardiff, 79-81 (1976) .
R.C.H. Cheng; N.A.K. Amin; Estimating Parameter in Continuous
Univariate Distribution with a Shifted, Journal of Royal Statistical
Society, 45 394-403 (1983).
R.V. Hogg; A.T. Craig; Mathematical Statistics (5th ed.), Englewood Cliffs, New Jersey: Prentice-Hall (1995) .
S. Anatolyev; G. Kosenok; An Alternative to Maximum Likelihood Based on Spacing, Econometric Theory, 21 472-476 (2005) .
S. Bennett; Log-Logistic Regression Models for Survival Data, Applied Statistical, 32 165-171 (1983) .
V. S. Huzurbazar; The Likelihood Equation, Consistency and the
Maxima of the Likelihood Function, Journal of Probability and
Statistics, 14 185-200 (1948).
W. J. Voorn; Characterization of The Logistic and Log-Logistic
Distributions by Extreme value Related Stability with Random Sample
Size, Journal of Applied Probability, 24 838-851 (1987).