Azzalini and A. Capitaino; Statistical applications of the
multivariate skew-normal distribution. Journal of the Royal Statistical
Society, Series B, 61, 579-602 (1999).
Azzalini and A. Dalla Valle; The multivariate skew-normal distribution. Biometrika, 83, 715-726 (1996).
Azzalini; A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171-178 (1985).
Biswas and K. Das; A Bayesian analysis of bivariate ordinal
data: Wisconsin epidemiologic study of diabetic retinopathy revisited.
Statistics in Medicine, 21, 549-559 (2002).
B. Liseo and N. Loperfido; A Bayesian interpretation of the
multivariate skew-normal distribution. Statistics and Probability
Letters, 61, 395-401 (2003).
E. T. Bradlow and A. M. Zaslavsky; A hierarchical latent
variable model for ordinal data from a customer satisfaction survey with
"no answer" responses. Journal of the American Statistical Association,
94, 43-52 (1999).
G. Gonz´alez-Farias, A. Dom´ınguez-Molina and A. K. Gupta;
Additive properties of skew normal random vectors. Journal of
Statistical Planning and Inference, 126, 521-534 (2004).
G. Verberkand E.Lesaffre; A linear mixed-effects model with
heterogeneity in the random-effects population. Journal of the American
Statistical Association, 91, 217-221 (1996).
H. Ishwaran and C. A. Gatsonis; A general class of
hierarchical ordinal regression models with applications to correlated
ROC analysis. The Canadian Journal of Statistics, 28, 731-750 (2000).
H. Ishwaran; Univariate mid multirater ordinal cumulative link
regression with covariate specific cutpoints. The Canadian Journal of
Statistics, 28, 715-730 (2000).
J. B. Lang; Bayesian ordinal and binary regression models with
a parametric family of mixture links. Computational Statistics and Data
Analysis, 31, 59-87 (1999).
J. C. Lee, T. I. Lin, K. J. Lee and Y. L. Hsu; Bayesian
analysis of Box-Cox transformed linear mixed models with ARMA(p,q)
dependence. Journal of Statistical Planning and Inference, 133, 435-451
(2005).
J. C. Pinheiro, C. H. Liu and Y. N. Wu; Efficient algorithms
for robust estimation in linear mixed-effects models using the
multivariate t distribution. Journal of Computational and Graphical
Statistics, 10, 249–276 (2001).
M. K. Cowles, B. P. Carlin and J. E. Connett; (Bayesian tobit
modeling of longitudinal ordinal clinical trial compliance data with
nonignorablemissingness. Journal of the American Statistical
Association, 91,86-98 (1996).
M. Tan, Y. S. Qu, E. Mascha and A. Schubert; A Bayesian
hierarchical model for multilevel repeated ordinal data: analysis of
oral practice examinations in a large anesthesiology training program.
Statistics in Medicine, 18, 1983-1992 (1999).
M. Xie, D. G. Simpson and R. J. Carroll; Random effects in
censored ordinal regression: Latent structure and Bayesian approach.
Biometrics, 56, 376-383 (2000).
N.M. Laird and J. H. Ware; Random effects models for longitudinal data. Biometrics, 38, 963-974 (1982).
P. E. Rossi, Z. Gilula, and G. M. Allenby; (2001). Overcoming
scaleusage heterogeneity: A Bayesian hierarchical approach. Journal of
the American Statistical Association, 96, 20-31.
Q. Liu and D. A. Pierce; A note on Gauss-Hermite quadrature. Biometrika, 81, 624-29(1994).
R. B. Arellano-Valle and M. G. Genton; On fundamental skew distributions. Journal of Multivariate Analysis, 96, 93-116 (2005).
R. D. Gibbons and D.Hedeker; Application of random-effects
probit regression models. Journal of Consulting and Clinical Psychology,
62, 285-296 (1994).
S. K. Sahu, D. K. Dey and M. D. Branco; A new class of
multivariate skew distributions with application to Bayesian regression
models. Canadian Journal of Statistics, 31, 129-150. 9 (2003).
T. I. Lin and J. C. Lee; On modelling data from degradation
sample paths over time. Australian and New Zealand Journal of
Statistics, 45, 257-270 (2003).
U. Chipman and M. Hamada; Bayesian analysis of ordered
categorical data from industrial experiments. Technimetrics, 38, 1-10
(1996).