References
1. A. Afifi; J. B. Kotlerman; S. L. Ettner and M. Cowa; Methods for Improving Regression Analysis for
Skewed Continuous or Counted Responses. Annual Review of Public Health, 28, 95–111 (2007).
2. C. Cameron and P. K. Trivedi; Econometric Models Based on Count Data : Comparisons and Applications
of Some Estimators and Tests. Journal of Applied Econometrics, 1, 29–53 (1986).
3. F. Falcone; G. Balbi; L. Di Martino; F. Grauso; M. E. Salzillo and E. M. Messalli; Surgical Management of
Early Endometrial Cancer: An Update and Proposal of a Therapeutic Algorithm. Medical Science Monitor,
20, 1298–1313 (2014).
4. F. Famoye and K. P. Singh; Zero-Inflated Generalized Poisson Regression Model with an Application to
Domestic Violence Data. Journal of Data Science, 4(1), 117–130 (2021).
5. G. Baetschmann and R. Winkelmann; Modeling Zero-Inflated Count Data when Exposure Varies: With An
Application to Tumor Counts. Biometrical Journal, 55(5), 679–686 (2013).
6. G. Grover; R. Vajala and P. K. Swain; On the Assessment of Various Factors Effecting the Improvement in
CD4 Count of Aids Patients Undergoing Antiretroviral Therapy Using Generalized Poisson Regression.
Journal of Applied Statistics, 42(6), 1291–1305 (2015).
7. G. Schwarz; Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461–464 (1978).
8. H. A. Hill; J. W. Eley; L. C. Harlan; R. S. Greenberg; R. J. Barrett and V. W. Chen; Racial Differences in
Endometrial Cancer Survival: The Black/White Cancer Survival Study. Obstetrics and Gynecology, 88(6),
919–926 (1996).
9. H. Arem and M. L. Irwin; Obesity and Endometrial Cancer Survival: A Systematic Review. International
Journal of Obesity, 37(5), 634–639 (2013).
10. H. Lee; K. Wang; J. A. Scott; K. K. W. Yau and G. J. McLachlan; Multi-Level Zero-Inflated Poisson
Regression Modeling of Correlated Count Data with Excess Zeros. Statistical Methods in MedicalResearch, 15(1), 47–61 (2006).
11. H. O. Smith; K. K. Leslie; M. Singh; C. R. Qualls; C. M. Revankar; N. E. Joste and E. R. Prossnitz;
GPR30: A Novel Indicator of Poor Survival for Endometrial Carcinoma. American Journal of Obstetrics
and Gynecology, 196(4), 386.e1-386.e11 (2007).
12. J. B. Smith; A. N. Fader and E. J. Tanner; Sentinel Lymph Node Assessment in Endometrial Cancer: A
Systematic Review and Meta-Analysis. American Journal of Obstetrics and Gynecology (2016).
13. J. M. Hilbe; Modeling Count Data (Vol. 1). Cambridge University Press (2014).
14. K. Dwivedi; S. N. Dwivedi; S. Deo; R. Shukla and E. Kopras; Statistical Models for Predicting Number of
Involved Nodes in Breast Cancer Patients. Health (Irvine Calif), 2(7), 641–651 (2011).
15. Karalok; T. Turan; D. Basaran; O. Turkmen; G. C. Kimyon; G. Tulunay and T. Tasci; Lymph Node
Metastasis in Patients with Endometrioid Endometrial Cancer. International Journal of Gynecological
Cancer, 27(4), 748–753 (2017).
16. M. Frumovitz; B. M. Slomovitz; D. K. Singh; R. R. Broaddus; J. Abrams; C. C. Sun; M. Bevers and D. C.
Bodurka; Frozen Section Analyses as Predictors of Lymphatic Spread in Patients with Early-Stage Uterine
Cancer. Journal of the American College of Surgeons, 199(3), 388–393 (2004).
17. M. Ridout; C. G. Demetrio and J. Hinde; Models for Count Data with Many Zeros. International Biometric
Conference, December, 1–13 (1998).
18. N. Duan; W. G. Manning; C. N. Morris and J. P. Newhouse; A Comparison of Alternative Models for the
Demand for Medical Care. Journal of Business and Economic Statistics, 1(2), 115–126 (1983).
19. N. J. Horton; E. Kim and R. Saitz; A Cautionary Note Regarding Count Models of Alcohol Consumption in
Randomized Controlled Trials. BMC Medical Research Methodology, 7, 1–9 (2007).
20. O. Akbayir; A. Corbacioglu; B. P. Cilesiz; C. Numanoglu; A. Akca; H. Guraslan; L. Vuslat and A. Cetin;
Gynecologic Oncology The Novel Criteria for Predicting Pelvic Lymph Node Metastasis in Endometrioid
Adenocarcinoma of Endometrium. 125, 400–403 (2012).
21. P. C. Consul and F. Famoye; Generalized Poisson Regression Model. Communications in Statistics -
Theory and Methods, 21(1), 89–109 (1992).
22. P. V. Grootendorst; A Comparison of Alternative Models of Prescription Drug Utilization. Health
Economics, 4(3), 183–198 (1995).
23. P. Verma; P. K. Swain; K. K. Singh and M. Khetan; Count Data Regression Modeling: An Application to
Spontaneous Abortion. Reproductive Health, 17(1), 1–10 (2020).
24. V. Korkmaz; M. M. Meydanli; I. Yalcın; M. E. Sarı; H. Sahin; E. Kocaman; A. Haberal; P. Dursun; T.
Gungor and A. Ayhan; Comparison of Three Different Risk-Stratification Models for Predicting Lymph
Node Involvement in Endometrioid Endometrial Cancer Clinically Confined to the Uterus. Journal of
Gynecologic Oncology, 28(6), 1–11 (2017).
25. W. Gardner; E. P. Mulvey and E. C. Shaw; Regression Analyses of Counts and Rates : Poisson,
Overdispersed Poisson , and Negative Binomial Models. 118(3), 392–404 (1995)