IJSREG Trion Studio

No Publication Cost

Vol 9, No 2:

subscription

Modelling Of Lymph Node Count In Endometrial Cancer Patients Using Zero Inflated Generalized Poisson Model
Abstract
Prediction of the number of involved lymph nodes in an endometrial cancer patient is crucial for medical practitioners to identify the progression of the disease. Sometimes the distribution of involved nodes shows over dispersion. This over dispersion may be due to unobserved heterogeneity viz. larger proportion of zero nodal counts. For this study, data concerning a total of 170 patients were taken from a local cancer hospital. We have fitted several count regression models and compared them to identify the model with the best performance for predicting the number of involved lymph nodes. Based on the lowest AIC and BIC values, the Zero Inflated Generalized Poisson model is found to be the best-fitted model for explaining nodal involvement in endometrial cancer patients. The predictors viz., obstetric history, higher grade, and tumor size are significantly associated with a greater number of involved lymph nodes (P-value <0.05). In conclusion, an obstetric history significantly increased the chance of negative nodes while the tumor size and grade status significantly increased the chance of positive nodes among EC patients
Full Text
PDF
References
1. A. Afifi; J. B. Kotlerman; S. L. Ettner and M. Cowa; Methods for Improving Regression Analysis for Skewed Continuous or Counted Responses. Annual Review of Public Health, 28, 95–111 (2007).
2. C. Cameron and P. K. Trivedi; Econometric Models Based on Count Data : Comparisons and Applications of Some Estimators and Tests. Journal of Applied Econometrics, 1, 29–53 (1986).
3. F. Falcone; G. Balbi; L. Di Martino; F. Grauso; M. E. Salzillo and E. M. Messalli; Surgical Management of Early Endometrial Cancer: An Update and Proposal of a Therapeutic Algorithm. Medical Science Monitor, 20, 1298–1313 (2014).
4. F. Famoye and K. P. Singh; Zero-Inflated Generalized Poisson Regression Model with an Application to Domestic Violence Data. Journal of Data Science, 4(1), 117–130 (2021).
5. G. Baetschmann and R. Winkelmann; Modeling Zero-Inflated Count Data when Exposure Varies: With An Application to Tumor Counts. Biometrical Journal, 55(5), 679–686 (2013).
6. G. Grover; R. Vajala and P. K. Swain; On the Assessment of Various Factors Effecting the Improvement in CD4 Count of Aids Patients Undergoing Antiretroviral Therapy Using Generalized Poisson Regression. Journal of Applied Statistics, 42(6), 1291–1305 (2015).
7. G. Schwarz; Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461–464 (1978).
8. H. A. Hill; J. W. Eley; L. C. Harlan; R. S. Greenberg; R. J. Barrett and V. W. Chen; Racial Differences in Endometrial Cancer Survival: The Black/White Cancer Survival Study. Obstetrics and Gynecology, 88(6), 919–926 (1996).
9. H. Arem and M. L. Irwin; Obesity and Endometrial Cancer Survival: A Systematic Review. International Journal of Obesity, 37(5), 634–639 (2013).
10. H. Lee; K. Wang; J. A. Scott; K. K. W. Yau and G. J. McLachlan; Multi-Level Zero-Inflated Poisson Regression Modeling of Correlated Count Data with Excess Zeros. Statistical Methods in MedicalResearch, 15(1), 47–61 (2006).
11. H. O. Smith; K. K. Leslie; M. Singh; C. R. Qualls; C. M. Revankar; N. E. Joste and E. R. Prossnitz; GPR30: A Novel Indicator of Poor Survival for Endometrial Carcinoma. American Journal of Obstetrics and Gynecology, 196(4), 386.e1-386.e11 (2007).
12. J. B. Smith; A. N. Fader and E. J. Tanner; Sentinel Lymph Node Assessment in Endometrial Cancer: A Systematic Review and Meta-Analysis. American Journal of Obstetrics and Gynecology (2016).
13. J. M. Hilbe; Modeling Count Data (Vol. 1). Cambridge University Press (2014).
14. K. Dwivedi; S. N. Dwivedi; S. Deo; R. Shukla and E. Kopras; Statistical Models for Predicting Number of Involved Nodes in Breast Cancer Patients. Health (Irvine Calif), 2(7), 641–651 (2011).
15. Karalok; T. Turan; D. Basaran; O. Turkmen; G. C. Kimyon; G. Tulunay and T. Tasci; Lymph Node Metastasis in Patients with Endometrioid Endometrial Cancer. International Journal of Gynecological Cancer, 27(4), 748–753 (2017).
16. M. Frumovitz; B. M. Slomovitz; D. K. Singh; R. R. Broaddus; J. Abrams; C. C. Sun; M. Bevers and D. C. Bodurka; Frozen Section Analyses as Predictors of Lymphatic Spread in Patients with Early-Stage Uterine Cancer. Journal of the American College of Surgeons, 199(3), 388–393 (2004).
17. M. Ridout; C. G. Demetrio and J. Hinde; Models for Count Data with Many Zeros. International Biometric Conference, December, 1–13 (1998).
18. N. Duan; W. G. Manning; C. N. Morris and J. P. Newhouse; A Comparison of Alternative Models for the Demand for Medical Care. Journal of Business and Economic Statistics, 1(2), 115–126 (1983).
19. N. J. Horton; E. Kim and R. Saitz; A Cautionary Note Regarding Count Models of Alcohol Consumption in Randomized Controlled Trials. BMC Medical Research Methodology, 7, 1–9 (2007).
20. O. Akbayir; A. Corbacioglu; B. P. Cilesiz; C. Numanoglu; A. Akca; H. Guraslan; L. Vuslat and A. Cetin; Gynecologic Oncology The Novel Criteria for Predicting Pelvic Lymph Node Metastasis in Endometrioid Adenocarcinoma of Endometrium. 125, 400–403 (2012).
21. P. C. Consul and F. Famoye; Generalized Poisson Regression Model. Communications in Statistics - Theory and Methods, 21(1), 89–109 (1992).
22. P. V. Grootendorst; A Comparison of Alternative Models of Prescription Drug Utilization. Health Economics, 4(3), 183–198 (1995).
23. P. Verma; P. K. Swain; K. K. Singh and M. Khetan; Count Data Regression Modeling: An Application to Spontaneous Abortion. Reproductive Health, 17(1), 1–10 (2020).
24. V. Korkmaz; M. M. Meydanli; I. Yalcın; M. E. Sarı; H. Sahin; E. Kocaman; A. Haberal; P. Dursun; T. Gungor and A. Ayhan; Comparison of Three Different Risk-Stratification Models for Predicting Lymph Node Involvement in Endometrioid Endometrial Cancer Clinically Confined to the Uterus. Journal of Gynecologic Oncology, 28(6), 1–11 (2017).
25. W. Gardner; E. P. Mulvey and E. C. Shaw; Regression Analyses of Counts and Rates : Poisson, Overdispersed Poisson , and Negative Binomial Models. 118(3), 392–404 (1995)

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser