A. Garrido; R.Caro-Jesús; J. Octavio; A. Carnicero; M. Such; A new approach to fitting the three-parameter Weibull distribution: An application to glass ceramics, Communications in Statistics - Theory and Methods, 49(13)1-18(2019).
A. H. Soliman; M. A. E. Elgarhy; M. Shakil; Type II half logistic family of distributions with applications. Pakistan Journal of Statistics and Operation Research, 13(2) 245-264 (2017).
A. M. Almarashi; , M. Elgarhy; , M. Elsehetry; M. M. GolamKibria; B. M.; A. Algarni; A new extension of exponential distribution with statistical properties and applications. Journal of Nonlinear Sciences and Applications, 12 135-145 (2019).
A. M., Sarhan; M. Zaindin; Modified Weibull distribution. APPS. Applied Sciences, 11123-136(2019).
A. S. Hassan; M. Elgarhy; A new family of exponentiatedWeibull-generated distributions. International Journal of Mathematics and its Applications, 4(1) 135-148(2016).
A. S. Wahed; T. M. Luong; J. H. Jeong; A new generalization of Weibull distribution with application to a breast cancer data set. Statistics in medicine, 28(16) 2077-2094(2009).
B. S. El-Desouky; A. Mustafa; S. Al-Garash; The exponential flexible Weibull extension distribution. ArXivpreprint arXiv:1605.08152(2016)..
C. D. Lai; M. Xie; D. N. P. Murthy; A modified Weibull distribution. In IEEE Transactions on Reliability, 52(1) 33-37 (2003).
G. M. Cordeiro; M. Alizadeh; P.R. D. Marinho; The type I half-logistic family of distributions. Journal of Statistical Computation and Simulation, 86(4) 707-728 (2016).
G. S. Mudholkar; D. K. Srivastava; Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE transactions on reliability, 42(2) 299-302(1993).
M. A. UlHaq; R. M. Usman; S. Hashmi; A. I. Al-Omeri; The Marshall-Olkin length-biased exponential distribution and its applications. Journal of King Saud University-Science, 31(2) 246-251 (2019).
M. Anwar; A. Bibi; The half-logistic generalized Weibull distribution. Journal of Probability and Statistics, Hindawi; 1-18 (2018)..
M. Bebbington; C. D. Lai; R. Zitikis; A flexible Weibull extension. Reliability Engineering & System Safety, 92(6) 719-726 (2007).
M. Bourguignon, R.B. Silva; G. M. Cordeiro; The Weibull-G family of probability distributions. Journal of Data Science 12(1) 53-68 (2014).
M. D. Nichols; W. J. Padgett; A bootstrap control chart for Weibull percentiles. Quality and reliability engineering international, 22(2), 141-151(2006).
M. ElgarhyHaq; M. A.; I. Perveen; Type II Half Logistic Exponential Distribution with Applications. Annals of Data Science, 6(2) 245-257 (2019).
M. Mansoor; M. H. Tahir; G. M. Cordeiro; , S. B. Provost; A. Alzaatreh; The Marshall-Olkin logistic-exponential distribution. Communications in Statistics-Theory and Methods, 48(2) 220-234(2019).
M. Xie; Y. Tang; T.N. Goh; A modified Weibull extension with bathtub-shaped failure rate function, Reliability Engineering & System Safety, 76 279-285(2002).
N.Eugene; C. Lee; F. Famoye; Beta-normal distribution and its applications. Communications in Statistics-Theory and Methods, 31 497-512(2002).
R. Core; R. Team; A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URLhttps://www.R-project.org/ (2020).
R. D. Gupta; D. Kundu; Generalized exponential distribution: different method of estimations. Journal of Statistical Computation and Simulation, 69(4) 315-337 (2001).
S. K. Singh; U. Singh; A. S. Yadav; Bayesian estimation of Marshall–Olkin extended exponential parameters under various approximation techniques. Hacettepe Journal of Mathematics and Statistics, 43(2) 347-360 (2014).
S., Nadarajah; G. M. Cordeiro; E. M. Ortega; The exponentiated Weibull distribution: a survey. Statistical Papers, 54(3) 839-877 (2013).
V. Kumar; U. Ligges; A package for some probability distributions. http://cran.r-project.org/web/packages/reliaR/index.html (2011).
W. J. Braun; D. J. Murdoch; A first course in statistical programming with R. Cambridge University Press (2016).
Z. A. Al-saiary; R. A. Bakoban; A. A. Al-zahrani; Characterizations of the Beta Kumaraswamy. Exponential Distribution. Mathematics, 8(1) 23 (2020).