3. A. O. Langlands; S. J. Pocock; G. R. Kerr; S. M.
Gore;Long-term Survival of Patients with Breast
Cancer: a study of the durability of the disease,
Br Med J, 2 1247–1251 (1997).
-
A. Renyi; On Measures of Entropy and
Information Proceedings of Fourth Berkeley
Symposium Mathematics Statistics and
Probability, University of California Press. Vol 1
547-561 (1961).
-
B. Efron; Logistic Regression, Survival Analysis,
and the Kaplan-Meier curve, J Am Stat Assoc,
83, 414–425, (1988).
-
C. E. Bonferroni; Elmenti di statistic a general,
Libreria Seber, Fire, (1930).
-
C. Lee; F. Famoye; A. Alzaatreh; Methods for
Generating Families of Continuous Distribution
in the Recent Decades, Wiley Interdiscip Rev
Comput Stat, 5 219–238 (2013).
-
C. Shannon; A Mathematical Theory of
Communication, Bell System Technical Journal,
27 379-423 (1948).
-
C. Tsallis; Possible Generalization of Boltzmann-
Gibbs Statistics, J Stat Phys, 52 479-487 (1988).
-
F. Proschan; Theoretical Explanation of
Observed Decreasing Failure rate,
Technometrics, 5 375–383 (1963).
11.G. M. Cordeiro; M. A. Castro; New family of
Generalized Distributions, J Stat Comput Simul,
81 883D898 (2011).
12.I. Elbatal; A. Zubair; A. M. Almarashi; A New
Alpha Power Transformed Family of
Distributions, Properties and Application to
Weibull Model, J Non-Linear Sci. Appl., 12 1-20
(2019).
13.J. Swain; S. Venkatraman; and J. Wilson;
LeastSquare Estimation of the Distribution
Function inJohnson's translation system, J
StatistComput Simul, 29 271-297 (1988).
-
J.F. Lawless; Statistical Models and Methods for
Lifetime Data, New York, Wiley, (1982).
-
K. Xu; M. Xie; L. C. Tang; S. L. Ho; Application
of Neural Networks in Forecasting Engine
Systems Reliability, Applied Soft Computing,
2(4) 255-268 (2003).
16.K. Zografos; N. Balakrishnan; On families of
beta-generated and generalized gamma-generated
distributions and associated Inference, Stat
Method Vol. 6 344-362 (2009).
17.M. Bourguignon; R. B. Silva; G.M. Cordeiro;
The Weibull-G family of Probability
Distribution, J. Data Sci. 12 53-68 (2014).
18.M. C. Jones; On families of Distribution with
Shape Parameters, Int Stat Rev, 83 (2) 175-192
(2011).
19.M. O. Lorenz; Methods of Measuring the
Concentration of Wealth, Publ. Am Stat Assoc, 9
209–219 (1905).
20.N. Eugene; C. Lee; F. Famoye; Beta-Normal
Distribution and its Applications, Commun Stat
Theory Methods, 31 497–512 (2002).
21. R. Shanker; A Size-Biased Poisson-Shanker
Distribution and its Applications, International
Journal of Probability and Statistics, 6(2) 33-44
(2017a).
22. R. Shanker; A Zero-Truncated Poisson-Shanker
and its Applications, Int. J Stat Appl., 7(3) 159-
69 (2017b).
23. R. Shanker; Shanker Distribution and its
Applications, Int J Stat Appl, 5(6) 338-48 (2015).
24. R. Shanker; The Discrete Poisson-Shanker
distribution, J Biostat, 1(1) 1-7 (2016).
25. S. Bennette;Log-Logistic Regression Models for
Survival Data, Appl. Stat, 32 165-171 (1963).
26.S. Dey; D. Kumar; Alpha Power Transformed
Lindley Distribution, Properties and Associated
Inference with Application to Earthquake Data,
Annals Data Sci, 6(4) 625-650 (2019).
27.S. Nasira; P. N. Mwitha; Alpha Power
Transformed Frechet Distribution, Applied
Mathematics and Information Sciences, 13(1)
129-141 (2019).
28.Team R.C. R; A Language and Environment for
Statistical Computing, R Foundation for
Statistical Computing, (2019).