IJSREG Trion Studio

No Publication Cost

Vol 7, No 1 :

openaccess

On Estimation in Exponential Power Distribution and its Applications
Ram Kishan , Prabhat Kumar Sangal
Abstract

This paper addresses various properties of the exponential power distribution such asraw and conditional moments, mean residual life, mean past lifetime, quantile function and order statistics. Maximum likelihood and Bayesian estimation methods are used to estimate the scale and shape parameters as well as survival characteristics of the distribution. We obtain maximum likelihood and Bayes estimates of the parameters along with their standard errors and confidence intervals using Monte Carlo simulation and Markov Chain Monte Carlo (MCMC) techniques taking various sample sizes. For Bayesian estimation, independent gamma priors are used. The applicationof the model is illustrated by taking a real dataset using three methods viz.goodness-of-fit criteria, goodness-of-fit statistics and classical goodness-of-fit plots.
Full Text
PDF
References

Abouammoh; A. Alshingiti; Reliability Estimation of Generalized Inverted Exponential Distribution, Journal of Statistical Computation and Simulation, 79(11) 1301-1315(2009). http://dx.doi.org/10.1080/00949650802261095.
Cullen; H. Frey; Probabilistic Techniques in Exposure Assessment, 1st edition. New York, NY: Plenum Press (1999).
Henningsen; O. Toomet; maxLik: A Package for Maximum Likelihood Estimation in R, Computational Statistics, 26(3) 443-458(2010). http://dx.doi.org/10.1007/s00180-010-0217-1.
Peng;Z. Xu;M. Wang; The E Exponentiated Lindley Geometric Distribution with Applications,Entropy, 21(5)510(2019). http://dx.doi.org/10.3390/e21050510.
Kundu;M. Raqab; Generalized Rayleigh Distribution: Different Methods of Estimations, Computational Statistics & Data Analysis, 49(1) 187-200(2005). http://dx.doi.org/10.1016/j.csda.2004.05.008.
G. Cordeiro; E. Ortega;A.Lemonte; The Exponential–WeibullLifetime distribution, Journal of Statistical Computation and Simulation, 84(12)2592-2606(2003). http://dx.doi.org/10.1080/00949655.2013.797982.
H. Pham;C. Lai; On Recent Generalizations of the WeibullDistribution, IEEE Transactions on Reliability, 56(3) 454-458(2007). http://dx.doi.org/10.1109/tr.2007. 903352.
J. Carrasco;E. Ortega; G. Cordeiro; A Generalized Modified WeibullDistribution for Lifetime Modeling, Computational Statistics & Data Analysis, 53(2) 450-462 (2008). http://dx.doi.org/10.1016/j.csda.2008.08.023.
J.F.Kenney; E. S. Keeping; Mathematics of Statistics. Part I, 3rd edition. New Jersey, NJ : Princeton(1964).
J. G. Charles; T. J. Leif;mcmc: Markov Chain Monte Carlo. R package version 0.9-6(2019).https://CRAN.R-project.org/ package= mcmc.
J. J. A. Moors; A Quantile Alternative for Kurtosis, The Statistician, 37(1) 25(1988).
M. Anwar; A. Bibi; The Half-Logistic Generalized Weibull Distribution, Journal of Probability and Statistics, 2018, 1-12 (2018). http://dx.doi.org/10.1155/2018/8767826.
M. Nassar;A. Alzaatreh;M. Mead;O. Abo-Kasem; Alpha Power Weibull Distribution: Properties and Applications, Communications in Statistics - Theory and Methods, 46(20) 10236-10252(2016).http://dx.doi.org/10.1080/3610926.2016.1231816.
M. Pal; M. M. Ali; J. Woo; ExponentiatedWeibull Distribution, Statistica, LXVI (2) 139-147(2006).
https://rivista-statistica.unibo.it/article/download 493/478.
M. Shakhatreh;A. Lemonte;G. Moreno–Arenas; The log-normal Modified WeibullDistribution and its Reliability Implications, Reliability Engineering & System Safety, 188 6-22 (2019). http://dx.doi.org/10.1016/j.ress.2019.03.014.
N.Balakrishnan; A. C. Cohen; Order Statistics & Inference: Estimation Methods, Academic Press, London: Elsevier (2014).
N. Mantel; N. R. Bohidar; J. L. Ciminera; Mantel-HaenszelAnalyses of Litter-matched Time to Response Data, with Modifications for Recovery of Inter Litter Information. Cancer Research, 37 3863-3868(1977). https://pdfs.semanticscholar.org/3fa9/73846114d92101daf43c83d620c35b94dcce.pdf.
N. Metropolis; S. Ulam; The Monte Carlo Method, Journal of the American Statistical Association, 44(247) 335(1949). http://dx.doi.org/10.2307/2280232.
R Core Team; R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2019). https://www.R-project.org.
R. D'Agostino; M. Stephens; Goodness-of-fit Techniques, 1st edition. New York, NY: Marcel Dekker (1986).
R. Glaser; Bathtub and Related Failure Rate Characterizations, Journal of the American Statistical Association,75(371) 667(1980). http://dx.doi.org/10.2307/2287666.
R. Gupta;D. Kundu;ExponentiatedExponential Family: An Alternative to Gamma and WeibullDistributions, Biometrical Journal,43(1) 117-130(2001). http://dx.doi.org/10.1002/1521-4036 (200102)43:1<117::aid-bimj117>3.0.co;2-r.
R. Smith;L. Bain; An Exponential Power Life-testing Distribution, Communications in Statistics,4(5), 469-481(1975).http://dx.doi.org/10.1080/03610927508827263
S. Dey; D. Kumar; P. Ramos; F. Louzada; Exponentiated Chen Distribution: Properties and Estimation, Communications in Statistics - Simulation and Computation, 46(10), 8118-8139 (2017).http://dx.doi.org/10.1080/03610918.2016.1267752.
S. Rajarshi; M. Rajarshi; Bathtub Distributions: A Review, Communications in Statistics-Theory and Methods, 17(8), 2597-2621(1988). http://dx.doi.org/10.1080/03610928808829761.

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser