Abouammoh; A. Alshingiti; Reliability Estimation of
Generalized Inverted Exponential Distribution, Journal of Statistical
Computation and Simulation, 79(11) 1301-1315(2009).
http://dx.doi.org/10.1080/00949650802261095.
Cullen; H. Frey; Probabilistic Techniques in Exposure Assessment, 1st edition. New York, NY: Plenum Press (1999).
Henningsen; O. Toomet; maxLik: A Package for Maximum
Likelihood Estimation in R, Computational Statistics, 26(3)
443-458(2010). http://dx.doi.org/10.1007/s00180-010-0217-1.
Peng;Z. Xu;M. Wang; The E Exponentiated Lindley Geometric
Distribution with Applications,Entropy, 21(5)510(2019).
http://dx.doi.org/10.3390/e21050510.
Kundu;M. Raqab; Generalized Rayleigh Distribution: Different
Methods of Estimations, Computational Statistics & Data Analysis,
49(1) 187-200(2005). http://dx.doi.org/10.1016/j.csda.2004.05.008.
G. Cordeiro; E. Ortega;A.Lemonte; The
Exponential–WeibullLifetime distribution, Journal of Statistical
Computation and Simulation, 84(12)2592-2606(2003).
http://dx.doi.org/10.1080/00949655.2013.797982.
H. Pham;C. Lai; On Recent Generalizations of the
WeibullDistribution, IEEE Transactions on Reliability, 56(3)
454-458(2007). http://dx.doi.org/10.1109/tr.2007. 903352.
J. Carrasco;E. Ortega; G. Cordeiro; A Generalized Modified
WeibullDistribution for Lifetime Modeling, Computational Statistics
& Data Analysis, 53(2) 450-462 (2008).
http://dx.doi.org/10.1016/j.csda.2008.08.023.
J.F.Kenney; E. S. Keeping; Mathematics of Statistics. Part I, 3rd edition. New Jersey, NJ : Princeton(1964).
J. G. Charles; T. J. Leif;mcmc: Markov Chain Monte Carlo. R
package version 0.9-6(2019).https://CRAN.R-project.org/ package= mcmc.
J. J. A. Moors; A Quantile Alternative for Kurtosis, The Statistician, 37(1) 25(1988).
M. Anwar; A. Bibi; The Half-Logistic Generalized Weibull
Distribution, Journal of Probability and Statistics, 2018, 1-12 (2018).
http://dx.doi.org/10.1155/2018/8767826.
M. Nassar;A. Alzaatreh;M. Mead;O. Abo-Kasem; Alpha Power
Weibull Distribution: Properties and Applications, Communications in
Statistics - Theory and Methods, 46(20)
10236-10252(2016).http://dx.doi.org/10.1080/3610926.2016.1231816.
M. Pal; M. M. Ali; J. Woo; ExponentiatedWeibull Distribution, Statistica, LXVI (2) 139-147(2006).
https://rivista-statistica.unibo.it/article/download 493/478.
M. Shakhatreh;A. Lemonte;G. Moreno–Arenas; The log-normal
Modified WeibullDistribution and its Reliability Implications,
Reliability Engineering & System Safety, 188 6-22 (2019).
http://dx.doi.org/10.1016/j.ress.2019.03.014.
N.Balakrishnan; A. C. Cohen; Order Statistics & Inference: Estimation Methods, Academic Press, London: Elsevier (2014).
N. Mantel; N. R. Bohidar; J. L. Ciminera;
Mantel-HaenszelAnalyses of Litter-matched Time to Response Data, with
Modifications for Recovery of Inter Litter Information. Cancer Research,
37 3863-3868(1977).
https://pdfs.semanticscholar.org/3fa9/73846114d92101daf43c83d620c35b94dcce.pdf.
N. Metropolis; S. Ulam; The Monte Carlo Method, Journal of the
American Statistical Association, 44(247) 335(1949).
http://dx.doi.org/10.2307/2280232.
R Core Team; R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria
(2019). https://www.R-project.org.
R. D'Agostino; M. Stephens; Goodness-of-fit Techniques, 1st edition. New York, NY: Marcel Dekker (1986).
R. Glaser; Bathtub and Related Failure Rate Characterizations,
Journal of the American Statistical Association,75(371) 667(1980).
http://dx.doi.org/10.2307/2287666.
R. Gupta;D. Kundu;ExponentiatedExponential Family: An
Alternative to Gamma and WeibullDistributions, Biometrical Journal,43(1)
117-130(2001). http://dx.doi.org/10.1002/1521-4036
(200102)43:1<117::aid-bimj117>3.0.co;2-r.
R. Smith;L. Bain; An Exponential Power Life-testing
Distribution, Communications in Statistics,4(5),
469-481(1975).http://dx.doi.org/10.1080/03610927508827263
S. Dey; D. Kumar; P. Ramos; F. Louzada; Exponentiated Chen
Distribution: Properties and Estimation, Communications in Statistics -
Simulation and Computation, 46(10), 8118-8139
(2017).http://dx.doi.org/10.1080/03610918.2016.1267752.
S. Rajarshi; M. Rajarshi; Bathtub Distributions: A Review,
Communications in Statistics-Theory and Methods, 17(8), 2597-2621(1988).
http://dx.doi.org/10.1080/03610928808829761.