References
A. Rѐnyi A; On measures of entropy and information. Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability Berkeley: University of California Press, vol. 1, 547-561 (1961).
A. Tripathi; U. Singh; S. K. Singh; Inferences for the DUS-Exponential Distribution Based on upper record values, Annals of Data Science, 1-17 (2019).
D. Kumar; U. Singh; S. K. Singh; A new distribution using sine function - its application to bladder cancer patients data, Journal of Statistics Applications and Probability Letters, 54(3), 417-427 (2015).
D. Kumar; U. Singh; S. K. Singh; A method of proposing new distribution and its application to bladder cancer patients data, Journal of Statistics Applications and Probability Letters, 2(3), 235-245 (2015).
G. M. Cordeiro; de Castro M; A new family of generalized distributions, Journal of Statistical Computation and Simulation, 81(7), 883-898 (2011)
G. M. Cordeiro; E. M. M. Ortega; D. C. C. da Cunha; The exponentiated generalized class of distributions, Journal of Data Science,11,1-27 (2013).
J. F. Lawless; Statistical models and methods for lifetime data. John Wiley and Sons, New York, (1982).
K. S. Deepthi; V. M. Chacko; An upside-down bathtub-shaped failure rate model using a DUS transformation of Lomax distribution, Lirong Cui; Ilia Frenkel; Anatoly Lisnianski (Eds); Stochastic Models in Reliability Engineering, Taylor & Francis Group, Boca Raton, CRC Press chapter 6, 81-100 (2020).
P. Gauthami; V. M. Chacko; DUS transformation of Inverse Weibull distribution: An upside-down failure rate model, Reliaility: Theory and Applications, Vol 16, No 2(62), 58-71 (2021).
P. Kavya; M. Manoharan; On a Generalized lifetime model using DUS transformation, V. Joshua; S. Varadhan; V. Vishnevsky; (Eds), Applied Probability and Stochastic Processes, Infosys Science Foundation Series, Springer, Singapore.281-291 (2020).
R. C. Gupta; R. D. Gupta; P. L. Gupta; A method of proposing new distribution and its application to bladder cancer patients data, Communications in Statistics - Theory and Methods, 27, 887-904 (1998).
S. K. Maurya; A. Kaushik; S. K. Singh; U. Singh; A new class of exponential transformed Lindley distribution and its application to Yarn data, International Journal of Statistics and Economics, 18(2), (2016).
S. Nadarajah; S. Kotz; The exponentiated type distributions, Acta Applicandae Mathematica, 92(2), 97-111 (2006).