IJSREG Trion Studio

No Publication Cost

Vol 9, No 1:

subscription

Power Xgamma Distribution: Properties and its Applications to Cancer Data
Shikhar Tyagi , Sumit Kumar , Arvind Pandey , Mahendra Saha , Hansraj Bagariya
Abstract
Over the years, several life time distributions have been introduced in the literature of distribution theory. In this paper, we proposed a new continuous probability distribution, named as power xgamma distribution (PXGD). We unearth various mathematical and statistical properties namely, reliability characteristics, moments, quantiles, order statistics, mean residual life time etc. Estimation of the parameters for PXGD has been made by using maximum likelihood method of estmation (MLE) , method of least square estimation (LSE) and others. Some real data sets have been used to substantiate the applicabilty of PXGD in real life situation.
Full Text
PDF
References
  1. A. S. Yadav;S. S. Maiti;M. Saha; The inverse xgamma distribution: statistical properties and different methods of estimation, Annals of Data Science, 1-19(2019).
  2. A.Z. Keller;A. R. R. Kamath; U. D. Perera; Reliability analysis of CNC machine tools, Reliability engineering, 3(6) 449-473(1982).
  3. C. Kleiber; Lorenz ordering of order statistics from log-logistic and related distributions, Journal of Statistical Planning and Inference, 120(1-2) 13-19(2004).
  4. D. V. Lindley; Fiducial distributions and Bayes’ theorem, Journal of the Royal Statistical Society: Series B (Methodological), 102-107(1958).
  5. E.T. Lee;J.W.Wang;Statistical Methods for Survival Data Analysis, 3rd ed.,Wiley, NewYork,(2003).
  6. I. Elbatal; F. Merovei; M. Elgarhy; A new generalized Lindley distribution, Mathematical Theory and
    Modeling, 3(13) 30-47(2013).
  7. J. F. Lawless; Statistical models and methods for lifetime data (Vol. 362), John Wiley & Sons,(2011).
  8. J. J. Swain;S. Venkatraman;J. R. Wilson; Least-squares estimation of distribution functions in
    Johnson’s translation system, Journal of Statistical Computation and Simulation, 29(4) 271-297(1988).
  9. J. L. Gastwirth; A general definition of the Lorenz curve, Econometrica: Journal of the Econometric
    Society, 1037-1039(1971).
  10. M. E. Ghitany;D. K. Al-Mutairi;N. Balakrishnan; L. J.Al-Enezi; Power Lindley distribution and
    associated inference, Computational Statistics & Data Analysis, 64 20-33(2013).
  11. M. Zenga; Inequality curve and inequality index based on the ratios between lower and upper
    arithmetic means, Statistica e Applicazioni, 4 3–27(2007).
  12. P. D. M.Macdonald; Comments and queries comment on “An estimation procedure for mixtures of
    distributions” by choi and bulgren, Journal of the Royal Statistical Society: Series B (Methodological),
    33(2) 326-329(1971).
  13. R. Ihaka;R. Gentleman; R: a language for data analysis and graphics, Journal of computational and
    graphical statistics, 5(3) 299-314(1996).
  14. S. Pundir;S. Arora;K. Jain; Bonferroni curve and the related statistical inference, Statistics&
    probability letters, 75(2) 140-150(2005).
  15. S. Sen; N. Chandra; S. S. Maiti; The weighted xgamma distribution: Properties and application, Journal
    of Reliability and Statistical Studies, 10(1) 43-58(2017).
  16. S. Sen;S. S. Maiti; N. Chandra; The Xgamma distribution: statistical properties and application, Journal
    of Modern Applied Statistical Methods, 15(1) 38(2016).
  1. V. G.Vodˇa; On the inverse Rayleigh distributed random variable, Reports of Statistical Application
    Research, 19 13-21(1972).
  2. V. K. Sharma; S. K. Singh;U. Singh;V. Agiwal; The inverse Lindley distribution: a stress-strength
    reliability model with application to head and neck cancer data, Journal of Industrial and Production Engineering, 32(3) 162-173(2015).

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser