A. R. El-Houssainy; W. A. Hassanein; T. A. Elhaddad; The Power
Lomax distribution with an application to bladder cancer data, Springer
Plus, 5 1838 (2016).
A. Renyi; On measures of entropy and information, Berkeley
Symposium on Mathematical Statistics and Probability, 1(1) 547-561
(1960).
A. Zaka; A. S. Akhter; Methods for estimating the parameters
of Power Function distribution, Pakistan Journal of Statistics and
Operation Research, 9 213-224 (2013).
Alzaatreh; F. Famoye; C. Lee; The Gamma- Normal distribution:
properties and applications, Computational Statistics and Data Analysis,
69 67-80 (2014).
C. Shannon; A mathematical theory of communication, Bell System Technical Journal, 27(3) 379-423 (1948).
D. Kundu; M. Z. Raqab; Generalized Rayleigh distribution:
Different methods of estimations, Computational Statistics and Data
Analysis, 49 187-200 (2005).
E. E. E. Akarawak; I. A. Adeleke; R. O. Okafor; The
Gamma-Rayleigh Distribution and Applications to Survival Data, Nigerian
Journal of Basic Applied Science, 25(2) 130-142 (2017).
E. J. Hannan; B. G. Quinn; The determination of the order of
an auto regression, Journal of Royal Statistical Society: Series B,
41190-195 (1979).
F. Merovci; Transmuted Rayleigh distribution, Austrian Journal of Statistics, 42 (1) 21-31 (2013).
G. Schwarz; Estimating the dimensions of a model, The Annals of Statistics, 6(2) 461-464 (1978).
H. Akaike; A new look at the statistical model identification, IEEE Automatic Control, 19 716-723 (1974).
H. Bazdogan; Model selection and Akaike’s information
criterion: The general theory and its analytical extensions,
Psychometrika, 52 345-370 (1987).
J. Harvda; F. Charvat; Quantification method in classification
processes: concept of structural entropy, Kybernetika, 3 30-35 (1967).
J. M. A. Nashaat; Estimation of two parameter powered inverse
Rayleigh distribution, Pakistan Journal of Statistics, 36(2) 117-133
(2020).
K. K. Shukla; R. Shanker; Power Ishita distribution and its
application to model lifetime data, Statistics in Transition, 19(1)
135-148 (2018).
M. D. Nichols; W. J. Padgett; A bootstrap control for Weibull
percentiles, Quality and Reliability Engineering International, 22
141-151 (2006).
M. E. Ghitany; D. K. Al-Mutairi; N. Balakrishanan; L. J.
Al-Enezi; Power Lindley distribution and associated inference,
Computational Statistics and Data Analysis, 64 20-33 (2013).
M. E. Ghitany; D. K. Al-Mutairi; S. M. Aboukhamseen;
Estimation of the reliability of a stress-strength system from power
Lindley distributions, Communication in Statistics, Simulation and
Computations, 44(1) 118-136 (2015).
M. G. Badar; A. M. Priest; Statistical aspects of fiber and
bundle strength in hybrid composites, Hayashi, T., Kawata, K. and
Umekawa, S. (eds), Progress in Science and Engineering Composites,
ICCM-IV, Tokyo, 1129-1136 (1982).
M. H. Tahir; G. M. Cordeiro; M. Mansoor; M. Zubair; The
Weibull-Lomax distribution: properties and applications, Hacettepe
Journal of Mathematics and Statistics, 44(2) 461-480 (2015).
M. Nassar; S. Dey; Different estimation methods for
Exponentiated Rayleigh distribution under constant-stress accelerated
life test, Quality and Reliability Engineering International, 1-13
(2018).
M. W. A. Ramos; P. R. D. Marinho; R. V. Da Silva; G. M.
Cordeiro; The exponentiated Lomax-Poisson distribution with an
application to lifetime data, Advances Applications and Statistics, 34
107-135 (2013).
S. D. Krishnarani; On a Power Transformation of Half-Logistic
distribution, Journal of Probability and Statistics, 5 1-10 (2016).
S. Mudasir; U. Jan; S. P. Ahmad; Weighted Rayleigh
distribution revisited via informative and non-informative priors,
Pakistan Journal of Statistics, 35(4) 321-348 (2019).