References
E. L. Piccolomini; F. Zama; Monitoring Italian COVID-19 spread by an adaptive SEIRD model, Medrxiv, 1-15,(2020).
H. D. D. Meares; M. P. Jones; When a System Breaks: Queueing Theory Model of Intensive Care Bed Needs during the COVID‐19 Pandemic, The Medical Journal of Australia,(2020).
I. Korolev; Identification and Estimation of the SEIRD Epidemic Model for COVID-19, (2020).
J. F. Raffensperger; M. K. Brauner; R. J. Briggs; Planning Hospital Needs for Ventilators and Respiratory Therapists in the COVID-19 Crisis, In RAND Corporation, (2020).
J. Kucharski; T. W. Russell; C. Diamond; Y. Liu; J. Edmunds; S. Funk; R. M. Eggo; Early Dynamics of Transmission and Control of COVID-19: A Mathematical Modelling Study,The Lancet Infectious Diseases,20 (5) 553–58,(2020).
J. Mackolil; B. Mahanthesh; Mathematical Modelling of Coronavirus Disease (COVID-19) Outbreak in India Using Logistic Growth and SIR Models, Research Square,(2020).
M. Jakhar; P. K. Ahluwalia; A. Kumar; COVID-19 Epidemic Forecast in Different States of India Using SIR Model, MedRxiv, 1–19,(2020).
R. Singh; S. Ali; M. Jain; A. A. Raina; Mathematical Model for Malaria with Mosquito-Dependent Coefficient for Human Population with Exposed Class ,Journal of the National Science Foundation of Sri Lanka 47(2),185-198,(2019).
S. M. Currie; how simulation modelling can help reduce the impact of COVID-19,Journal of Simulation,(2020),DOI: 10.1080/17477778.2020.1751570.
T. Rapolu; B. Nutakki; T. S. Rani; S. D. Bhavani; A Time-Dependent SEIRD Model for Forecasting the COVID-19 Transmission Dynamics,MedRxiv, 1–20,(2020).
V. Dolgopolovas; Coronavirus Disease (COVID-19) Identification Time Analysis Using Queueing Model (Preprint),(2020).
W. O. KERMACK; A. G. MCKENDRiCK; Contributions to the Mathematical Theory of Epidemics—I, Bulletin of Mathematical Biology,53, 33–55,(1991).
Zeb; E. Alzahrani; V. S. Erturk; G. Zaman; Mathematical Model for Coronavirus Disease 2019(COVID-19)Containing Isolation Class, BioMed Research International,(2020).