IJSREG Trion Studio

No Publication Cost

Vol 10, No 1:

subscription

Properties and Estimation of Extended Generalized Gamma Distribution
Abstract
In this paper, we propose a new family of generalized gamma distribution and is named as Extended Generalized Gamma Distribution. This paper is obtained by taking the weights to the Generalized Gamma Distribution. Various structural, reliability and characteristic properties of the model have been derived and studied in detail. Also, we used Bayesian estimation and MLE technique to estimate the parameters of this model. Different estimators of the distribution have been derived under the mutual combinations of loss functions and prior distributions.
Full Text
PDF
References
1. A.Dadpay;E.S.SoofiandR.Soyer;InformationMeasuresforGeneralizedGammaDistribution.Journal of Econometric, 138(2), 565-585 (2007).
2. B.O.Oluyede;OnInequalitiesandSelectionofExperimentsforLength-BiasedDistributions.Probability in the Engineering and Information Sciences, 13(2), 169-185 (1999).
3. C. Cox; The Generalized F Distribution- An Umbrella for Parametric Survival Analysis. Statistics in Medicine, 27(21), 4301-4312 (2008).
4. C. R. Rao; On Discrete Distributions Arising Out of Methods of Ascertainment. Sankhyā: The Indian Journal of Statistics, Series A (1961-2002), 27(2/4), 311-324 (1965).
5. D. P. Joseph; Multivariate Extended Gamma Distribution. Axioms, 6(2), 1-11 (2017).
6. E.W. Stacy and G. A. Mihram; Parameter Estimation for a Generalized Gamma Distribution. Technometrics, 7(3), 349-358 (1965).
7. E.W. Stacy; A Generalization of the Gamma Distribution. The Annals of Mathematical Sciences, 33(3), 1187-1192 (1962).
8. G.P.PatilandC.R.Rao;WeightedDistributionsandSize-BiasedSamplingwithApplicationstoWildlife Populations and Human Families. Biometrics, 34(2), 179-189 (1978).
9. H. A. Priyadarshani; Statistical Properties of Weighted Generalized Gamma Distribution. Mathematics Subject Classification, 62N05, 62B10 (2011).
10. H. L. Halter; Maximum Likelihood Estimation of the Parameters of Four Parameter Generalized Gamma Population from Complete and Censored Samples. Technometrics, 9(1), 159-165 (1967).
11. H. Pandey and A. K. Rao; Bayesian Estimation of Scale Parameter of Generalized Gamma Distribution Using Precautionary Loss Function. Indian Journal of Applied Statistics, 10, 21-27 (2006).
12. J. N. Kapur. Maximum Entropy Models in Science and Engineering. John Wiley and Sons, New York. (1989).
13.M. I. Riffi and H. S. Al-Masri; Bayesian Inference on the Generalized Gamma Distribution Using Conjugate Priors. IUG Journal of Natural Studies, 28(2), 1-18 (2020).
14. P. H. Huang and T. Y. Hwang; On New Moment Estimation of Parameters of the Generalized Gamma Distribution Using Its Characterization. Taiwanese Journal of Mathematics, 10 (4), 1083-1093 (2006).
15. P. L. Ramos and F. Louzada; A Modified Reference Prior for the Generalized Gamma Distribution. arXiv preprint arXiv:1412.5843, I, 1-22 (2014).
16. P. L. Ramos and F. Louzada; Bayesian Reference Analysis for the Generalized Gamma Distribution. IEEE Communications Letters, 22(9), 1950-1953 (2018).
17.R. V. Lakshmi and V. S. Vaidyanathan; Three Parameter Gamma Distribution: Estimation Using Likelihood, Spacings and Least Squares Approach. Journal of Statistics and Management Systems, 19(1), 37-53 (2016).
18.R. A. Fisher; The Effects of Methods of Ascertainment Upon the Estimation of Frequencies. Ann. Eugenics, 6, 13-25 (1934).
19. S. Naqash; S. P. Ahmad and A. Ahmad; Bayesian Analysis of Generalized Gamma Distribution. Journal of Statistics Applications and Probability, 4(3), 499-511 (2015).
20.S. Shukla; G. Shukla; V. Kumar and M. G. Goswami; Comparison Between Bayesian and Maximum Likelihood Estimation of Scale Parameter in Generalized Gamma Type Distribution with Known Shape Parameters Under Different Loss Functions. International Journal on Emerging Technologies, 8(1), 288- 294 (2017).

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser