IJSREG Trion Studio

No Publication Cost

Vol 9, No 3:

subscription

Reliability Estimation in Lindley Populations Using Hybrid Censored Data
Abstract
The main focus of the study is to make inferences on the stress-strength reliability (SSR) for Lindley distributions utilizing hybrid censored data, where  and  respectively are the strength and stress variables which follow distinct Lindley distributions. For SSR, the asymptotic confidence intervals are constructed along with the maximum likelihood estimates. Under a linear exponential (Linex) loss function, the Bayes estimator of SSR is calculated while taking into account non-informative and gamma informative priors The Bayes estimators are derived using the Tierney-Kadane’s approximation and Markov Chain Monte Carlo (MCMC) techniques. Also, the MCMC method-based HPD credible interval for SSR is developed. A Monte Carlo numerical research is conducted to compare various estimators and censoring techniques. Finally, a real-world example is examined for explanatory purposes
Full Text
PDF
References
1. A. Asgharzadeh; H. K. Ng; R. Valiollahi and M. Azizpour; Statistical Inference for Lindley Model Based on Type II Censored Data. Journal of Statistical Theory and Applications, 16(2), 178–197 (2017). 2. A. Biswas; S. Chakraborty and M. Mukherjee; On Estimation of Stress–Strength Reliability with Log-Lindley Distribution. Journal of Statistical Computation and Simulation, 91(1), 128–150(2021). 3. A. Gelman; J. B. Carlin; H. S. Stern; D. B. Dunson; A. Vehtari and D. B. Rubin; Bayesian Data Analysis. CRC press, New York, (2013). 4. B. Epstein; Truncated Life Tests in the Exponential Case. The Annals of Mathematical Statistics, 25(3), 555–564(1954). 5. D. Al-Mutairi; M. Ghitany and D. Kundu; Inferences on Stress-Strength Reliability from Lindley Distributions. Communications in Statistics-Theory and Methods, 42(8), 1443–1463 (2013). 6. D. V. Lindley; Fiducial Distributions and Bayes' Theorem. Journal of the Royal Statistical Society, Series B (Methodological), 20(1), 102-107 (1958). 7. F. G. Akgül; Ş. Acıtaş and B. Şenoğlu; Inferences on Stress–Strength Reliability Based on Ranked Set Sampling Data in Case of Lindley Distribution. Journal of Statistical Computation and Simulation, 88(15), 3018–3032 (2018). 8. F. Sultana and Y. M. Tripathi; Estimation and Prediction for the Generalized Half Normal Distribution under Hybrid Censoring. Journal of Testing and Evaluation, 48(2), 1071–1094 (2020). 9. G. S. Rao; R. Kantam; K. Rosaiah and J. Pratapa Reddy; Estimation of Stress–Strength Reliability from Inverse Rayleigh Distribution. Journal of Industrial and Production Engineering, 30(4), 256–263 (2013). 10. H. Krishna; M. Dube and R. Garg; Estimation of P(Y < X) for Progressively First-Failure-Censored Generalized Inverted Exponential Distribution. Journal of Statistical Computation and Simulation, 87(11), 2274–2289 (2017). 11. H. Krishna and R. Goel; Inferences for Two Lindley Populations Based on Joint Progressive Type-II Censored Data. Communications in Statistics-Simulation and Computation, 51(9), 4919-4936 (2022). 12. I. Kumar and K. Kumar; On Estimation of P (V < U) for Inverse Pareto Distribution under Progressively Censored Data. International Journal of System Assurance Engineering and Management, 13(1), 189-202 (2022). 13. J. M. Byrnes; Y. J. Lin; T. R. Tsai and Y. Lio; Bayesian Inference of δ = P(X < Y) for Burr Type XII Distribution Based on Progressively First Failure-Censored Samples. Mathematics, 7(9), 794 (2019). 14. K. Krishnamoorthy and Y. Lin; Confidence Limits for Stress–Strength Reliability Involving Weibull Models. Journal of Statistical Planning and Inference, 140(7), 1754–1764 (2010). 15. K. Kumar; H. Krishna and R. Garg; Estimation of P (Y< X) in Lindley distribution using progressively first failure censoring. International Journal of System Assurance Engineering and Management, 6(3), 330-341(2015). 16. L. Tierney and J. B. Kadane; Accurate Approximations for Posterior Moments and Marginal Densities. Journal of the American Statistical Association, 81(393), 82–86 (1986). 17. M. Dube; R. Garg and H. Krishna; On Progressively First Failure Censored Lindley Distribution. Computational Statistics, 31(1), 139–163 (2016). 18. M. E. Ghitany; B. Atieh and S. Nadarajah; Lindley Distribution and Its Application. Mathematics and Computers in Simulation, 78(4), 493-506 (2008). 19. M.-H. Chen and Q.-M. Shao; Monte Carlo Estimation of Bayesian Credible and HPD Intervals. Journal of Computational and Graphical Statistics, 8(1), 69–92 (1999). 20. N. Balakrishnan and D. Kundu; Hybrid Censoring: Models, Inferential Results and Applications. Computational Statistics & Data Analysis, 57(1), 166–209 (2013). 21. N. Draper and I. Guttman; Bayesian Analysis of Hybrid Life Tests With Exponential Failure Times. Annals of the Institute of Statistical Mathematics, 39(1), 219–225 (1987). 22. N. Ebrahimi; Estimating the Parameters of an Exponential Distribution from a Hybrid Life Test. Journal of Statistical Planning and Inference, 14(2-3), 255–261 (1986). 23. N. Metropolis and S. Ulam; The Monte Carlo method. Journal of the American Statistical Association, 44(247), 335–341 (1949). 24. R. Garg and K. Kumar; On Estimation of P (Y < X) for Generalized Inverted Exponential Distribution Based on Hybrid Censored Data. Statistica, 81(3), 335-361 (2021). 25. S. Dey and B. Pradhan; Generalized Inverted Exponential Distribution under Hybrid Censoring. Statistical Methodology, 18, 101–114 (2014). 26. S. K. Singh; U. Singh; A. Yaday and P. Viswkarma; On the Estimation of Stress Strength Reliability Parameter of Inverted Exponential Distribution. International Journal of Scientific World, 3(1), 98–112 (2015). 27. S. Kotz; Y. Lumelskii and M. Pensky; The Stress-Strength Model and Its Generalization: Theory and Applications. World Scientific, Singapore, (2003). 28. S. S. Maiti and I. Mukherjee; On Estimation of the PDF and CDF of the Lindley Distribution. Communications in Statistics-Simulation and Computation, 47(5), 1370–1381 (2018). 29. S. Saini; A. Chaturvedi and R. Garg; Estimation of Stress–Strength Reliability for Generalized Maxwell Failure Distribution under Progressive First Failure Censoring. Journal of Statistical Computation and Simulation, 91(7), 1366-1393 (2021). 30. S. Shoaee and E. Khorram; Stress-Strength Reliability of a Two-Parameter Bathtub-Shaped Lifetime Distribution Based on Progressively Censored Samples. Communications in Statistics-Theory and Methods, 44(24), 5306–5328 (2015). 31. S.-M. Chen and G. K. Bhattacharyya; Exact Confidence Bounds for an Exponential Parameter under Hybrid Censoring. Communications in Statistics-Theory and Methods, 16(8), 2429–2442 (1987). 32. W. Hastings;. Monte Carlo Sampling Methods using Markov Chains and Their Applications, Biometrika, 57(1), 97–109 (1970). 33. Z. W. Birnbaum and O. M. Klose; Bounds for the Variance of the Mann-Whitney Statistic. The Annals of Mathematical Statistics, 28(4), 933–945 (1957). 34. Z. Xia; J. Yu; L. Cheng; L. Liu and W. Wang; Study on the Breaking Strength of Jute Fibres using Modified Weibull Distribution. Composites Part A: Applied Science and Manufacturing, 40(1), 54–59 (2009).

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser