. Dolara;F. Grimaccia; S. Leva;M. Mussetta; E. Ogliari; A
physical hybrid artificial neural network for short term forecasting of
PV plant power output, Energies 8 1138–1153 (2018).
A. Gandelli; F. Grimaccia; S. Leva; M. Mussetta; E. Ogliari;
Hybrid model analysis and validation for PV energy production
forecasting, 2014 International Joint Conference on Neutral Networks,
1957–1962 (2014).
A. I. Saleh; A. H. Rabie; K. M. Abo-Al-Ez; A data mining based
load forecasting strategy for smart electrical grids, Advanced
Engineering Informatics, 30 422–448 (2016).
A. Saberian; H. Hizam; M. A. M. Razid;M. Z. A. A. Kadir; M.
Mirzaei; Modelling and prediction of photovoltaic power output using
artificial neural networks. International Journal ofPhotoenergy, 14 1–10
(2014)
C. Wan; J. Zhao; Y. Song; Z. Xu;J. Lin; Z. Hu Z; Photovoltaic
and solar power forecasting for smart grid energy management, CSEE
Journal of Power and Energy Systems, 1 38–46 (2015).
D. L. Marino; K. Amarasinghe; M. Manic; Building energy load
forecasting using deep neural networks, IECON 2016-42nd Ann Conf IEEE
Ind Electron Soc:7046–7051. abs/1610.09460:1-6 (2016).
G. Chicco; Overview and performance assessment of the
clustering methods for electrical load pattern grouping, Energy, 421
68–80 (2012).
G. Chicco; R. Napoli.; F. Piglione; P. Postolache; M.
Scutariu; C. Toader; Load pattern-based classification of electricity
customers, IEEE Transaction on Power System, 192 1232–1239 (2004).
I.P. Panapakidis; A. S, Bouhouras; G.C. Christoforidis; A
missing data treatment method for photovoltaic installations, 2018 IEEE
International Energy Conference (ENERGYCON), 1–6 (2018).
J. A. G. Ordiano; S. Waczowicz; M. Reischl; R. Mikut; V.
Hagenmeyer; Photovoltaic power forecasting using simple data-driven
models without weather data, Computer Science Researchand Development,
32 237–246 (2017).
J. Dobschinski; R. Bessa; P. Du; K. leiser; S. E. Haupt;M.
Lange; C.Mhrlen; D. Nakafuji; M. Rodriguez Uncertainty forecasting in a
nutshell: prediction models designed to prevent significant errors, IEEE
Power and Energy Magazine, 15 40–49(2017).
J. Liu; W. Fang; X. Zhang; C. Yang; An improved photovoltaic
power forecasting model with the assistance of aerosol index data, IEEE
Transaction Sustainable Energy, 6 434–442 (2015).
J. Zhang; A. Florita; B. Hodge; S. Lu; H.F. Hamann; V.
Banunarayan; A. M. Brockway; A suite of metrics for assessing the
performance of solar power forecasting, Solar Energy,111 157–175 (2015).
K. Gajowniczek; T. Zabkowski; Short term electricity
forecasting based on user behavior using individual smart meter
data,Journal of Intelligent & Fuzzy System, 30 223–234 (2015).
L. Luo; T. Hong; M. Yue; Real-time anomaly detection for very
short-term load forecasting, Journal of Modern Power Systemand Clean
Energy, 6 235–243 (2018).
L. Suganthi; A. A. Samuel; Energy models for demand
forecasting a review, Renewable Sustainable Energy Reviews, 16 1223–1240
(2012)
M. Alanazi; A. Alanazi; A. Khodaei; Long-term solar generation
forecasting, 2016 IEEE/PES Trans DistribConf Expo (T & D):1–13
(2017).
P. Ramsami; V. Oree; A hybrid method for forecasting the
energy output of photovoltaic systems, Energy Conversion and Management,
95 406–413 (2015).
S. Daliento;A. Chouder; P. Guerriero; A.M.Pavan; A. Mellit; R.
Moeini; P. Tricoli; Monitoring, diagnosis and power forecasting for
photovoltaic fields: a review, International Journal of Photoenergy,
1–13 (2017).
S. Haben; C. Singleton; P. Grindrod; Analysis and clustering
of residential customers energy behavioral demand using smart meter
data, IEEE Transaction on Smart Grid, 7 136–144 (2016).
S. Pelland; J. Remund; J. Kleissl; T. Oozeki; K. D.
Brabandere; Photovoltaic and solar forecasting: State of the art. Tech
Rep IEA PVPS:T14–T01, 1–36 (2013).
T. Khatib; W. Elmenreich W; A model for hourly solar radiation
data generation from daily solar radiation data using a generalized
regression artificial neural network, International Journal of
Photoenergy, 1–13 (2015).
U. B. Filik; O. N. Gerek; M. Kurban M; Hourly forecasting of
long term electric energy demand using novel mathematical models and
neural networks,International Journal of Innovative computing,
Information and Control, l 7 115–118 (2011).
X. Chen; C. Kang; X. Tong; Q. Xia; J. Yang; Improving the
accuracy of bus load forecasting by two-stage bad data identification
method, IEEE Transaction of Power System, 29 1634–1641 (2014).
Y. Chakhchoukh; P. Panciatici; L. Mili; Electric load
forecasting based on statistical robust method, IEEE Transaction on
Power System, 26 982–991 (2011)