IJSREG Trion Studio

No Publication Cost

Vol 9, No 1:

subscription

Robustness Study of Sequential Testing Procedures for Generalized Maxwell Failure Distribution
Naresh Chandra Kabdwal , Surinder Kumar
Abstract
In this paper, sequential probability ratio test (SPRT) is developed for testing the simple hypotheses regarding the parameters of the Generalized Maxwell failure distribution. The operating characteristics (OC) and average sample number (ASN) functions are determined for the scale and shape parameters of the distribution. Robustness of sequential probability ratio test is investigated, when there has been a change in the distribution under study. The findings are displayed through tables and graphs, so that one can see the numerical evaluated departures in OC and ASN functions.

Full Text
PDF
References
A. Wald;  Sequential Analysis. John Wiley, New York (1947).
A. Chaturvedi; A. Kumar; S. Kumar; Robustness of the Sequential Proceduresfora Family of Life Testing     Models, Metron, 56, 117-137, (1998).
A. Chaturvedi; A. Kumar; S. Kumar; Sequential Testing Procedures for a Class of Distributions Representing,     Various Life Testing Models, Statistical Papers, 41, 65-84, (2000).
A. Kharin; Performance and robustness evaluation in sequential hypotheses testing, Communications in     Statistics-Theory and Method 45 (6):1693–709,(2016).doi:10.1080/03610926.2014.944659.
B. Epstein; M. Sobel; Sequential Life Test in Exponential Case, Ann. Math. Statist, 26, 82-93, (1995).
D. J. Hubbard; O. B. Allen; Robustness of the SPRT for a negative binomial to misspecification of the     dispersion parameter, Biometrics, 47, 419-427, (1991).
Debanjana Bhattacharjee; NitisMukhopadhyay; On SPRT and RSPRT for the unknown mean in a normal     distribution with equal mean and variance, Sequential Analysis, 31, 108-134, (2012).
E. R. Montagne; N. D. Singpurwalla; Robustness of Sequential Exponential Life-Testing Procedures, Journal     of American Statistic Association, Vol. 80, No. 391, 715-719, (1985).
G. B. Oakland; An application of sequential analysis to whitefish sampling, Biometrics, 6, 59-67, (1950).
Govind S. Mudholkar; Ziji Yu; Saria S. Awadalla; Sequential probability ratio test for the mode of M-    Gaussian distribution, Sequential Analysis, 35 (2), 226-237, (2016).
I. S. Gradshteyn; I. M.  Ryzhik; Table of Integrals, Series Products, London: Academic Press, (1965).
L. Harter; A. H. Moore; An Evaluation Exponential and Weibull test plans, IEEE Transaction on Reliability,     vol.25, No. 2, 100-104,(1976).
L. J. Bain; M. Engelhardt; Sequential Probability Ratio Tests for the shape parameter of NHPP, IEEE     Transaction on Reliability, R-31, 79-83 (1982).
L. Zou; Vexler A.; Yu  J.; Wan H.; A sequential density-based empirical likelihood ratio test for treatment     effects, Statistics in Medicine 38 (12):2115–25, (2019).
Logan Opperman& Wei Ning; Sequential probability ratio test for skew normal distribution Communication in     Statistics-Simulation and Computation, 2019. https://doi.org/10.1080/03610918.2019.1614623.
N. L. Johnson; Cumulative sum control chart and the Weibull Distribution, Technometrics, 8, 481-491, (1966).
M. Phatarfod; A Sequential Test for Gamma Distribution, Journal of American Statistic Association,

    66, 876-878, (1971).
S. Bacanli; Y. P. Demirhan; A group sequential test for the Inverse Gaussian Mean,Statistical Papers, 49, 337-    386, (2008).
S. G. Hu; Wang H. L.; Nearly optimal truncated group sequential test on binomial proportions,     Communications in Statistics-Simulation and Computation 47:2332–42, (2018).
Surinder Kumar; Naresh Chandra; A note on sequential testing of the mean of an inverse Gaussian distribution     with known coefficient of variation, Journal of Indian Statistical Association, 47, 151-160, (2009). 
Surinder Kumar; Vaidehi Singh; MayankVaish; Robustness study of the sequential procedures for the new     Weibull-Pareto distribution, Journal of Statistics Application & Probability, 7(1), 59-73, (2018).

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser