References
A. Wald; Sequential Analysis. John Wiley, New York (1947).
A. Chaturvedi; A. Kumar; S. Kumar; Robustness of the Sequential Proceduresfora Family of Life Testing Models, Metron, 56, 117-137, (1998).
A. Chaturvedi; A. Kumar; S. Kumar; Sequential Testing Procedures for a Class of Distributions Representing, Various Life Testing Models, Statistical Papers, 41, 65-84, (2000).
A. Kharin; Performance and robustness evaluation in sequential hypotheses testing, Communications in Statistics-Theory and Method 45 (6):1693–709,(2016).doi:10.1080/03610926.2014.944659.
B. Epstein; M. Sobel; Sequential Life Test in Exponential Case, Ann. Math. Statist, 26, 82-93, (1995).
D. J. Hubbard; O. B. Allen; Robustness of the SPRT for a negative binomial to misspecification of the dispersion parameter, Biometrics, 47, 419-427, (1991).
Debanjana Bhattacharjee; NitisMukhopadhyay; On SPRT and RSPRT for the unknown mean in a normal distribution with equal mean and variance, Sequential Analysis, 31, 108-134, (2012).
E. R. Montagne; N. D. Singpurwalla; Robustness of Sequential Exponential Life-Testing Procedures, Journal of American Statistic Association, Vol. 80, No. 391, 715-719, (1985).
G. B. Oakland; An application of sequential analysis to whitefish sampling, Biometrics, 6, 59-67, (1950).
Govind S. Mudholkar; Ziji Yu; Saria S. Awadalla; Sequential probability ratio test for the mode of M- Gaussian distribution, Sequential Analysis, 35 (2), 226-237, (2016).
I. S. Gradshteyn; I. M. Ryzhik; Table of Integrals, Series Products, London: Academic Press, (1965).
L. Harter; A. H. Moore; An Evaluation Exponential and Weibull test plans, IEEE Transaction on Reliability, vol.25, No. 2, 100-104,(1976).
L. J. Bain; M. Engelhardt; Sequential Probability Ratio Tests for the shape parameter of NHPP, IEEE Transaction on Reliability, R-31, 79-83 (1982).
L. Zou; Vexler A.; Yu J.; Wan H.; A sequential density-based empirical likelihood ratio test for treatment effects, Statistics in Medicine 38 (12):2115–25, (2019).
Logan Opperman& Wei Ning; Sequential probability ratio test for skew normal distribution Communication in Statistics-Simulation and Computation, 2019. https://doi.org/10.1080/03610918.2019.1614623.
N. L. Johnson; Cumulative sum control chart and the Weibull Distribution, Technometrics, 8, 481-491, (1966).
M. Phatarfod; A Sequential Test for Gamma Distribution, Journal of American Statistic Association,
66, 876-878, (1971).
S. Bacanli; Y. P. Demirhan; A group sequential test for the Inverse Gaussian Mean,Statistical Papers, 49, 337- 386, (2008).
S. G. Hu; Wang H. L.; Nearly optimal truncated group sequential test on binomial proportions, Communications in Statistics-Simulation and Computation 47:2332–42, (2018).
Surinder Kumar; Naresh Chandra; A note on sequential testing of the mean of an inverse Gaussian distribution with known coefficient of variation, Journal of Indian Statistical Association, 47, 151-160, (2009).
Surinder Kumar; Vaidehi Singh; MayankVaish; Robustness study of the sequential procedures for the new Weibull-Pareto distribution, Journal of Statistics Application & Probability, 7(1), 59-73, (2018).