References
1. A.
Gelman and D. B. Rubin; A Single Series from the Gibbs Sampler Provides a False
Sense of Security. In Bayesian Statistics 4 (J. M. Bernardo, J. 0.Berger, A. P.
Dawid and A. F. M. Smith, Eds.). Oxford University Press, 625-632 (1992).
2. A. Pandey;
D. D. Hanagal; P. Gupta and S. Tyagi; Analysis of Australian Twin Data Using
Generalized Inverse Gaussian Shared Frailty Models Based on Reversed Hazard
Rate. International Journal of Statistics and Reliability Engineering, 7(2),
219-235 (2020).
3. A. Pandey;
D. D. Hanagal; S. Tyagi and P. Gupta; Generalized Lindley Shared Frailty Based
on Reversed Hazard Rate. International Journal of Reliability, Quality and
Safety Engineering, 2150040 (2021).
4. A.
Pandey; D. D. Hanagal and S. Tyagi; Generalized Lindley Shared Frailty Models.
Statistics and Applications, 19(2), 41-62 (2021).
5. A. Pandey;
S. Bhushan; L. Pawimawha and S. Tyagi; Analysis of Bivariate Survival Data
using Shared Inverse Gaussian Frailty Models: A Bayesian Approach, Predictive
Analytics Using Statistics and Big Data: Concepts and Modeling, Bentham Books,
14, 75-88 (2020).
6. A.
Pandey and S. Tyagi; Comparison of Multiplicative Frailty Models Under Weibull
Baseline Distribution. Lobachevskii J Math 42, 3184–3195 (2021).
7. C. A.
Santos and J.A. Achcar A Bayesian Analysis for Multivariate Survival Data in
the Presence of Covariates. Journal of Statistical Theory and Applications, 9,
233-253 (2010).
8. C. L.
Loprinzi; J. A. Laurie; H. S. Wieand; J. E. Krook; P. J. Novotny; J. W. Kugler
and N. E. Klatt; Prospective Evaluation of Prognostic Variables from Patient-Completed
Questionnaires. North Central Cancer Treatment Group. Journal of Clinical
Oncology, 12(3), 601-607 (1994).
9. D. D.
Hanagal; Frailty Regression Models in Mixture Distributions. Journal of
Statistical Planning and Inference, 138(8), 2462-68 (2008a).
10. D. D.
Hanagal; Modeling Survival Data Using Frailty Models. Chapman & Hall/CRC.
New York (2011).
11. D. D.
Hanagal; Frailty Models in Public Health. Handbook of Statistics, 37(B),
209-247. Elsevier Publishers; Amsterdam (2017).
12. D. D.
Hanagal; Modeling Survival Data Using Frailty Models. 2nd Edition. Springer;
Singapore (2019).
13. D. D.
Hanagal and A. D. Dabade; Modeling of Inverse Gaussian Frailty Model for Bivariate
Survival Data. Communications in Statistics-Theory and Methods, 42(20), 3744-3769
(2013).
14. D. D.
Hanagal and A. D. Dabade; Comparison of Shared Frailty Models for Kidney
Infection Data Under Exponential Power Baseline Distribution. Communications in
Statistics-Theory and Methods, 44(23), 5091-5108 (2015).
15. D. D.
Hanagal and A. Pandey; Inverse Gaussian Shared Frailty for Modeling Kidney
Infection Data. Advances in Reliability, 1, 1-14 (2014a).
16. D. D.
Hanagal and A. Pandey; Gamma Shared Frailty Model Based on Reversed Hazard Rate
for Bivariate Survival Data. Statistics & Probability Letters, 88, 190-196
(2014a).
17. D. D.
Hanagal and A. Pandey; Inverse Gaussian Shared Frailty Models with Generalized
Exponential and Generalized Inverted Exponential as Baseline Distributions.
Journal of Data Science, 13(2), 569-602 (2015b).
18. D. D.
Hanagal and A. Pandey; Gamma Shared Frailty Model Based on Reversed Hazard Rate.
Communications in Statistics-Theory and Methods, 45(7), 2071-2088 (2016a).
19. D. D.
Hanagal and A. Pandey; Inverse Gaussian Shared Frailty Models Based on Reversed
Hazard Rate. Model Assisted Statistics and Applications, 11, 137-151 (2016b).
20. D. D.
Hanagal and A. Pandey; Shared Inverse Gaussian Frailty Models Based on Additive
Hazards. Communications in Statistics-Theory and Methods, 46(22), 11143-11162
(2017a).
21. D. D.
Hanagal and A. Pandey; Shared Frailty Models Based on Reversed Hazard Rate for Modified
Inverse Weibull Distribution as Baseline Distribution. Communications in
Statistics-Theory and Methods, 46(1), 234-246 (2017b).
22. D. D.
Hanagal and R. Sharma; Modeling Heterogeneity for Bivariate Survival Data by Shared
Gamma Frailty Regression Model. Model Assisted Statistics and Applications, 8,
85-102 (2013).
23. D. D.
Hanagal and R. Sharma; Bayesian Inference in Marshall-Olkin Bivariate
Exponential Shared Gamma Frailty Regression Model under Random Censoring.
Communications in Statistics, Theory and Methods, 44(1), 24-47 (2015a).
24. D. D.
Hanagal and R. Sharma; Comparison of Frailty Models for Acute Leukaemia Data
Under Gompertz Baseline Distribution. Communications in Statistics, Theory
& Methods, 44(7), 1338-1350 (2015b).
25. D. D.
Hanagal and R. Sharma; Analysis of Bivariate Survival Data Using Shared Inverse
Gaussian Frailty Model. Communications in Statistics-Theory and Methods, 44(7),
1351-1380 (2015c).
26. D. F.
Andrews and A. M. Hertzberg; DATA: A Collection of Problems from Many Fields
for the Student and Research Worker, New York: Springer-Verlag (1985).
27. D. G.
Clayton; A Model for Association in Bivariate Life Tables and Its Applications to
Epidemiological Studies of Familial Tendency in Chronic Disease Incidence.
Biometrica, 65, 141-151(1978).
28. D. R.
Cox; Regression Models and Life Tables (with Discussion), Journal of Royal
Statistical Society, Series B, 34, 187-220(1972).
29. D.
Oakes; Bivariate Survival Models Induced by Frailties. Journal of the American
Statistical Association, 84(406), 487-493 (1982).
30. D. V.
Lindley; Fiducial Distributions and Bayes Theorem. Journal of the Royal
Statistical Society, B, 20, 102-107 (1958).
31. J. G.
Ibrahim; C. Ming-Hui and D. Sinha; Bayesian Survival Analysis. Springer, Verlag
(2001).
32. J.
Geweke; Evaluating the Accuracy of Sampling-Based Approaches to the Calculation
of Posterior Moments. In Bayesian Statistics 4 (Eds. J.M. Bernardo, J. Berger,
A.P. Dawid and A.F.M. Smith), Oxford: Oxford University Press, 169-193 (1992).
33. J. H.
Edmonson; T. R. Fleming; D. G. Decker; G. D. Malkasian; E. O. Jorgensen; J. A.
Jefferies; and L. K. Kvols; Different Chemotherapeutic
Sensitivities and Host Factors Affecting Prognosis in Advanced Ovarian
Carcinoma Versus Minimal Residual Disease. Cancer Treatment Reports, 63(2),
241-247(1979).
34. J. W.
Vaupel; K.G. Manton and E. Stallaed; The Impact of Heterogeneity in Individual
Frailty on the Dynamics of Mortality. Demography, 16, 439-454 (1979).
35. M. E.
Ghitany; B. Atieh and S. Nadarajah; Lindley Distribution and Its Applications.
Mathematics and Computers in Simulation, 78(4), 493-506 (2008).
36. M. E.
Ghitany; F. Alqallaf; D. K. Al-Mutairi and H. Hussain; A Two Parameter Weighted
Lindley Distribution and Its Applications to Survival Data. Mathematics and
Computers in Simulation, 81(6), 1190-1201 (2011).
37. P.
Gupta; A. Pandey and S. Tyagi; Comparison of Multiplicative Frailty Models Under
Generalized Log-Logistic-II Baseline Distribution for Counter Heterogeneous
Left Censored Data, 1, 97-114 (2022).
38. P.
Hougaard; Life table Methods for Heterogeneous Populations: Distributions
Describing the Heterogeneity. Biometrika, 71(1), 75-83 (1984).
39. P.
Hougaard; Discussion of the Paper by D.G. Clayton and J. Cuzick. Journal of the
Royal Statistical Society, A, 148, 113-14 (1985).
40. P.
Hougaard; Modeling Heterogeneity in Survival Data. Journal of Applied
Probability,28,695-701 (1991).
41. P.
Hougaard; Analysis of Multivariate Survival Data. Springer: New York (2000).
42. S. Tyagi;
A. Pandey; D. D. Hanagal and P. Gupta; Bayesian Inferences in Generalized Lindley
Shared Frailty Model with Left Censored Bivariate Data. Advance Research Trends
in Statistics and Data Science, 137–157 (2021).
43. S.
Tyagi; A. Pandey and C. Chesneau; Identifying the Effects of Observed and
Unobserved Risk Factors Using Weighted Lindley Shared Regression Model. J Stat
Theory Pract 16, 16 (2022). https://doi.org/10.1007/s42519-021-00241-9
45. S.
Tyagi; A. Pandey; V. Agiwal and C. Chesneau; Weighted Lindley Multiplicative
Regression Frailty Models Under Random Censored Data. Computational and Applied
Mathematics, 40(8), 1-24 (2021).