IJSREG Trion Studio

No Publication Cost

Vol 9, No 3:

subscription

Some Applications of the Intervened Exponential Distribution in Survival Analysis
Abstract
This paper discusses about the Intervention-based Exponential probability model which is the advanced modification of truncated probability model. Distributional along with survival properties such as the expressions for, Survival function, Hazard function, Cumulative Hazard function, Aging Intensity, Mill’s ratio, Reverse Aging Intensity, truncation, and point of inflextion, are derived. Simulation study performance of maximum likelihood estimates(MLEs) has been carried out, followed by calculations of Bias and Mean Square Error(MSE) by arbitration of the Monte Carlo Method. The relevant applicability of the distribution model has been explicated by analyzing a real-life data set.
Full Text
PDF
References
  1. Alicia O’Cathain; Liz Croot; Katie Sworn; Edward Duncan; Nikki Rousseau; Katrina Turner; Lucy Yardley and Pat Hoddinott; Taxonomy of Approaches to Developing Interventions to Improve Health: A Systematic Methods Overview. Pilot and Feasibility Studies, 5(1), 1-27 (2019).
  2. Albert W. Marshall and Ingram Olkin; Life Distributions. 13, Springer, New York, 2007.
  3. David P. M. Scollnik; Bayesian Analysis of an Intervened Poisson Distribution. Communications in Statistics-Theory and Methods, 24(3), 735-754 (1995).
  4. Debasis Kundu and Rameshwar D. Gupta; Generalized Exponential Distribution: Bayesian Estimations. Computational Statistics & Data Analysis 52(4), 1873-1883 (2008).
  5. Edward J.  Hannan and Barry G. Quinn; The Determination of the Order of an Autoregression." Journal of the Royal Statistical Society: Series B (Methodological) 41(2), 190-195 (1979).
  6. Geoffrey S. Watson; Goodness-of-fit Tests on a Circle II. Biometrika, 49(1/2) 57-63 (1962).
  7. Gideon Schwarz; Estimating the Dimension of a Model. The Annals of Statistics, 461-464 (1978).
  8. Hirotugu Akaike; A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6) ,716-723 (1974).
  9. John Crowley and Marie Hu; Covariance Analysis of Heart Transplant Survival Data. Journal of the American Statistical Association, 72(357), 27-36 (1977).
  10. John D. Kalbfleisch and Ross L. Prentice; The Statistical Analysis of Failure Time Data. 360, John Wiley & Sons, 2011.
  11. K. Balakrishnan; Exponential Distribution: Theory, Methods and Applications. Routledge, 2019.
  12. Kenneth P. Burnham and David R. Anderson; A Practical Information-Theoretic Approach. Model Selection and Multimodel Inference, 2nd Ed. (2002).
  13. L. Rychetnik; M. Frommer; P. Hawe and A. Shiell; Criteria for Evaluating Evidence on Public Health Interventions. Journal of Epidemiology & Community Health, 56(2), 119-127 (2002).
  14. Mei-Ling Huang and Karen Yuen Fung; Intervened Truncated Poisson Distribution. Sankhyā: The Indian Journal of Statistics, Series B, 302-310 (1989).
  15. Nicholas Metropolis and Stanislaw Ulam; The Monte Carlo Method. Journal of the American statistical Association, 44(247), 335-341 (1949).
  16. Peter G. Smith; Richard H. Morrow and David A. Ross; Field Trials of Health Interventions. 480 (2015).
  17. Ramalingam Shanmugam; An Intervened Poisson Distribution and Its Medical Application. Biometrics, 1025-1029 (1985).
  18. Ramalingam Shanmugam; Alfred A. Bartolucci, and Karan P. Singh; The Analysis of Neurologic Studies Using an Extended Exponential Model.  Mathematics and Computers in Simulation, 59(1/3) 81-85 (2002).
  19. R. Jiang; Ping Ji, and X. Xiao; Aging Property of Unimodal Failure Rate Models. Reliability Engineering & System Safety, 79(1), 113-116 (2003).
  20. Theodore W. Anderson and Donald A. Darling; A Test of Goodness of Fit. Journal of the American Statistical Association, 49(268), 765-769 (1954).

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser