J. C., Lee; H. N. Hung; W. L. Pear; T. L. Kueng; On the distribution of the estimated process yield index Spk, Quality and Reliability Engineering International, 18(2), 111-116 (2002).
J. K Kanichukattu; J. A. Luke; Comparison between two process capability indices using generalized confidence intervals, International Journal of Advanced Manufacturing Technology, 69 2793-2798 (2013).
J. M. Juran; Quality control handbook. 3rd ed. New York: McGraw-Hill. (1974).
J. P. Chen; K. L. Chen;Supplier selection by testing the process incapability index, International Journal of Production Research, 44(3) 589-600 (2006).
J. P. Chen; K. S. Chen; Comparison of two process capabilities by using indices Cpm: an application to a color STN display, International Journal of Quality and Reliability Management, 21(1) 90-101 (2004).
J. P. Chen; L. I. Tong; Bootstrap confidence interval of the difference between two process capability indices, International Journal of Advanced Manufacturing Technology, 21, 249-256 (2003).
J. Tosasukul; K. Budsaba; A. Volodin; Dependent bootstrap confidence intervals for a population mean, Thailand Statistician, 7(1) 43-51(2009).
K. S. Chen; W. L.; P. C. Lin; Capability measures for processes with multiple Characteristics, Quality and Reliability Engineering International, 19 101-110 (2003).
L. K., Chan; S. W. Cheng; F. A. Spiring; A new measure of process capability, Cpm. Journal of Quality Technology, 20(3) 162-175(1988).
L.I. Tong; H. T. Chen; Y. F. Tai; Constructing BCabootstrap confidence interval for the difference between two non-normal process capability indices CNpmk, Quality Engineering, 20 209-220(2008).
M. Perakis; Estimation of differences between process capability indices CpmorCpmkfor two processes, Journal of Statistical Computation and Simulation, 80(3) 315-334(2010).
R. A. Boyles; Process capability with asymmetric tolerances,Communications in Statistics -Simulation and Computation, 23(3) 615-643 (1994).
R. Ihaka; R. R. Gentleman; A language for data analysis and graphics,Journal of Computational and Graphical Statistics, 5 299-314(1996).
S. Dey; M. Saha, Bootstrap confidence intervals of the difference between two generalized process capability indices for inverse Lindley distribution, Life Circle Reliability and Safety Engineering, 7 89-96 M. (2018).
S. Kumar; S. Dey; M. Saha; Comparison between two generalized process capability indices for Burr XII distribution using bootstrap confidence intervals.Life Cycle Reliability and Safety Engineering, https://doi.org/10.1007/s41872-01900092-1. (2019).
T. C. Hsiang; G. Taguchi; A tutorial on quality control and assurance -the Taguchi methods. ,ASA Annual Meeting, Las Vegas, Nevada, 188. (1985).
V. E. Kane; Process capability indices. Journal of Quality Technology, 18(1) 41-52 (1986).
W. L. Pearn; S. Kotz; N. L. Johnson; Distributional and inferential properties of process capability indices,Journal of Quality Technology, 24, 216-231(1992).
W. L. Pearn; Y.C. Cheng; Estimating process yield based on Spkfor multiple samples, International Journal of Production Research, 45(1) 49-64(2007).
W. L., Pearn; G. H. Lin; K. H. Wang; Normal approximation to the distribution of the estimated yield index Spk, Quality and Quantity, 38(1) 95-111(2004).