G. Hawkes; Point spectra of some mutually exciting point
processes, Journal of the Royal Statistical Society B, 33, 438-443
(1971).
A. G. Hawkes; D. A. Oakes; A cluster process representation of
a self-exciting process, Journal of Applied Probability, 11,493-503
(1974).
D. G. Kendall; Stochastic Processes and Population Growth, Journal of the Royal Statistical Society B, 11, 230-264 (1949).
D. J. Daley; D. Vere-Jones; An Introduction to the Theory of
Point Processes, Volume I: Elementary Theory and Methods, Second
Edition, Springer-Verlag, New York, ISBN 0-387-95541-0, (2003).
D. R. Cox; Some statistical methods are connected with a series of events, Jr. of Royal Statistical Soc. B, 17, 129-164(1955).
D. R. Cox; P. A. Lewis; The statistical analysis of a series of events, Metheun, London,(1966).
D. S. Harte; Pt Process: An R package for modelling marked
point processes indexed by time, Journal of Statistical Software, 35
(8), (2010).
D. Vere-Jones; Stochastic models for earthquake occurrence
(with discussion),Journal of the Royal Statistical Society B, 32, 1-62
(1970).
D. Vere-Jones; R. B. Davies; A statistical survey of
earthquakes in the main seismic region of New Zealand, Part 2, Time
Series Analyses, New Zealand Journal of Geology and Geophysics, 9,
251-284(1966).
E. Lewis; G. Mohler; P. J. Brantingham; A. L. Bertozzi;
Self-exciting point process models of civilian deaths in Iraq, Security
Journal, 25(3), 244-264 (2012) (First Online: September 2011).
E. S. Page; Continuous inspection schemes, Biometrika, 41(1-2), 100-115 (1954).
F. P. Schoenberg; Multidimensional residual analysis of point
process models for earthquake occurrences, Journal of the American
Statistical Association, 98(464), 789-795 (2003).
G. O. Mohler; M. B. Short; P. J. Brantingham; F. P.
Schoenberg; G. E. Tita; Self-exciting point process modeling of
crime,Journal of the American Statistical Association, 106(493), 100-108
(2011).
H. Ascher; H. Feingold; Repairable Systems Reliability –
Modeling, Inference, Misconceptions, and Their Causes, Marcel Dekker,
New York, (1984).
J. C. Zhuang; Second-order residual analysis of spatiotemporal
point processes and applications in model evaluation, Journal of the
Royal Statistical Society B, 68(4), 635-653 (2006).
J. F. Lawless; Statistical Models and Methods for Lifetime Data Analysis, John Wiley, New York, (1982).
J. M. Lucas; Counted data cusums, Technometrics, 27(2), 129-144 (1985).
J. T. Duane; Learning curve approach to reliability monitoring, IEEE Trans A, 2, 563-566(1964).
L. H. Crow; (1974) Reliability analysis for complex repairable
systems, In F. Proschan and R. J. Serfling (Editors), Society for
Industrial and Applied Mathematics (SIAM), Reliability and Biometry,
Philadelphia, 379-410.
M. Berman; Inhomogeneous and modulated gamma processes, Biometrika, 68(1), 143-152(1981).
M. Egesdal; C. Fathauer; K. Louie; J. Neuman; Statistical and
Stochastic modeling of gang rivalries in Los Angeles, SIAM Undergraduate
Research Online(2010).
M. J. Lakey; S. E. Rigdon; (1992)The modulated power law
process, Proceedings of the 45th Annual Quality Congress, American
Society of Quality Control, Milwaukee, Wi, 559-563.
O. O. Aalen; J. M.Hoem; Random time changes for multivariate
counting processes, Scandinavian Actuarial Journal, 2, 81-101 (1978).
P. A. W. Lewis; Remarks on the theory, computation, and
application of the spectral analysis of a series of events, Jr. Sound
Vib., 12, 353-375 (1970).
P. A. W. Lewis; Recent results in the statistical analysis of
univariate point processes, In Lewis, P. A. W. (Ed.), Wiley, Stochastic
Point Processes, New York, pp. 1-54 (1972).
T. Utsu; A statistical study on the occurrence of aftershocks, Geophysical Magazine, 30, 521-605 (1961).
T. Utsu; A. Seki; The relation between the area of the
aftershock region and the energy of the main shock, Zisin (Journal of
the Seismological Society of Japan), 2nd Series, ii. 7, 233-240 (1955).
W. M. Bassin; Increasing hazard functions and overhaul policy, ARMS, IEEE-69 C. 8-R,173-180(1969).
W. M. Bassin; A Bayesian optimal overhaul interval model for
the Weibull restoration process, J. Amer. Stat. Soc.,68, 575-578(1973).
Y. Ogata; H. Akaike; On linear intensity models for mixed
doubly stochastic Poisson and self-exciting point processes, Journal of
the Royal Statistical Society, Series B, 44(1), 102-107(1982).
Y. Ogata; M. Tanemura; Estimation of interaction potentials of
marked spatial point patterns through the maximum likelihood method,
Biometrics, 41, 421-433 (1985).
Y. Ogata; Long term dependence of earthquake occurrences and
statistical models for standard seismic activity (in Japanese),Suri
Zisin Caku (Mathematical Seismology) II (ed. M. Saito), ISM Cooperative
Research Report, Inst. Statist. Math., Tokyo, 3, 115-124 (1987).
Y. Ogata; Statistical models for earthquake occurrences and
residual analysis for point processes, Journal of the American
Statistical Association, 83(401), 9-27(1988).
Y. Ogata; Statistical model for standard seismicity and
detection of anomalies by residual analysis, Tectonophysics, 169,
159-174(1989).
Y. Ogata; Space-time point-process models for earthquake
occurrences, Annals of the Institute of Statistical Mathematics (Tokyo),
50(2), 379-402(1998).
Y. Ogata; Seismicity analysis through point-process modeling: A review, Pure and Applied Geophysics, 155(2-4), 471-507 (1999).