IJSREG Trion Studio

No Publication Cost

Vol 9, No 3:

subscription

The GLR Control Chart for the Maxwell Distribution
Abstract
This paper proposes the generalized likelihood ratio (GLR) control chart for monitoring the scale parameter of the Maxwell distribution. A simulation approach is used to evaluate the performance of proposed chart in terms of the average number of samples to signal (ANSS).The performance of the proposed GLR chart is compared with the Shewhart and CUSUM charts. Simulation results show that the GLR control chart perform better than the Shewhart and CUSUM charts in detecting a wide range of parameter shifts in the Maxwell distributed process. A numerical example based on real data set is provided to illustrate the application of the proposed control chart.
Full Text
PDF
References
1. D. G .Godase; S. B. Mahadik and A. C. Rakitzis; The SPRT Control Charts for the Maxwell Distribution. Quality and Reliability Engineering International, 38 (4), 1713-1728 (2021). 2. D. Siegmund and E. S. Venkatraman; Using the Generalized Likelihood Ratio Statistic for Sequential Detection of a Change-Point. The Annals of Statistics, 23, 255–271 (1995). 3. G. Capazzi; A Design of Change Detection Algorithms based on Generalized Likelihood Ratio Test. Environmetrics, 12,749-756 (2001). 4. J. Lee and J. Park; Poisson GLR Control Charts, Korean Journal of Applied Statistics. 27(5), 787-796 (2014). 5. J. Lee and W. H. Woodall; A Note on GLR Charts for Monitoring Count Processes. Quality and Reliability Engineering International, 34 (6), 1041-1044 (2018). 6. J. Lee; Y. Peng; N. Wang and M. R. Reynolds Jr.; A GLR Control Chart for Monitoring a Multinomial Process. Quality and Reliability Engineering International, 33(8), 1773-1782 (2017). 7. Kazemi Nia; B. S. Gildeh and Z. A. Ganji; The Design of Geometric Generalized Likelihood Ratio Control Chart. Quality and Reliability Engineering International, 34(5), 953-965 (2018). 8. L. Li; The GLR Chart for Poisson Process with Individual Observations, Advanced Materials Research, 542-543, 42-46 (2012). 9. M. R. Reynolds Jr. and J. Lou; An Evaluation of a GLR Control Chart for Monitoring the Process Mean. Journal of Quality Technology, 42, 287–310 (2010). 10. M. R. Reynolds Jr.; J. Lou; J. Lee and S. Wang; The Design of GLR Control Charts for Monitoring the Process Mean and variance. Journal of Quality Technology, 45(1), 34-60 (2013). 11. M. P. Hossain; M. H. Omar and M. Riaz; New V Control Chart for the Maxwell Distribution. Journal of Statistical Computation and Simulation, 87(3), 594-606 (2017). 12. M. P. Hossain; R. A. Sanusi; M. H. Omar and M. Riaz; On Designing Maxwell CUSUM Control Chart: An Efficient Way to Monitor Failure Rates in Boring Processes. The International Journal of Advanced Manufacturing Technology, 100(5), 1923-1930 (2019). 13. S. K. Majumdar; An Optimum Maintenance Strategy for a Vertical Boring Machine System. Operational Research Society of India, 30, 344-365 (1993). 14. S. W. Roberts; Control Chart Tests Based on Geometric Moving Averages. Technometrics, 1(3), 239-250 (1959). 15. T. L. Lai; Sequential Analysis: Some Classical Problems and New Challenges. Statistica Sinica, 11, 303-408 (2001). 16. W. Huang; M. R. Reynolds Jr. and S. Wang; A binomial GLR Control Chart for Monitoring a Proportion. Journal of Quality Technology, 44(3), 192-208 (2012). 17. W. Huang; S. Wang and M. R. Reynolds Jr.; A Generalized Likelihood Ratio Chart for Monitoring Bernoulli Processes, Quality and Reliability Engineering International, 29(5), 665-679 (2013). 18. Y. Peng and M. R. Reynolds Jr.; A GLR Control Chart for Monitoring Process Mean with Sequential Sampling. Sequential Analysis, 33, 298-317 (2014).

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser