IJSREG Trion Studio

No Publication Cost

Vol 9, No 2:

subscription

The Poisson-Uniform Distribution and its Applications
Abstract
In this article, we introduce a new distribution from the Poisson-X family namely, the Poisson-Uniform distribution. We explore some statistical properties as well as a useful linear representation of the distribution. The model parameters are estimated using the maximum likelihood method of estimation. We also estimate the stress-strength reliability, P(X>Y) of the new distribution and its performance is verified through Monte Carlo simulation. We illustrate the flexibility and applications of the new distribution by means of three different real life data sets.
Full Text
PDF
References
1.       Akinsete; F. Famoye; C. Lee; The beta-Pareto distribution, Statistics, 42(6), 547-563 (2008).
2.       A. Alzaatreh; C. Lee; F. Famoye; A new Method for generating families of  continous Distribution, Metron, 71(1), 63-79 (2013).
3.       A. Alzaatreh; C. Lee; F. Famoye; T- norml family of distributions: A new approach to generalize the normal distribution, Journal of Statistical Distributions and Applications, 1(1), 1-18 (2014).
4.       B. Al-Zahrani; H. Sagor; The poisson-lomax distribution, Revista Colombiana de Estadística, 37(1), 225-245(2014).
5.       D. Bhati; P.Kumawat; E. Gomez-Deniz; A new count model generated from mixed Poisson transmuted exponential family with an application to health care data, Communications in Statistics–Theory and Methods,  46(22), 11060-11076 (2017).
6.       D. Kundu;  R.D.Gupta; Estimation of P [Y< X] for Weibull distributions, IEEE transactions on reliability, 55(2), 270-280(2006).
7.       D. K. Al-Mutairi; M. E. Ghitany; D. Kundu;  Inferences on stress-strength reliability from Lindley distributions, Communications in Statistics-Theory and Methods, 42(8), 1443-1463(2013).
8.       E. Altun; A new model for over-dispersed count data: Poisson quasi-Lindley  regression model, Mathematical Sciences, 13(3), 241-247(2019).
9.       G. S. Mudholkar;  D. K Srivastava; Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE transactions on reliability, 42(2) 299-302(1993).  
10.    H. Torabi; N. H. Montazeri; The logistic-uniform distribution and its applications, Communications in Statistics-Simulation and Computation, 43(10), 2551- 2569(2014).
11.    J. Joseph; K. K. Jose; Reliability Test Plan for  Gumbel–Pareto Life Time Model, International Journal of Statistics and Reliability Engineering, 8(1) 121-131(2021).
12.    K. Cooray; M. M. Ananda; A generalization of the  half-normal distribution with applications to lifetime data, Communications in Statistics Theory and  Methods, 37(9) 1323-1337(2008).
13.    K. Jayakumar; K.K . Sankaran; On a generalisation of uniform distribution and its properties, Statistica, 76(1), 83-91(2016).
14.    L. Cheng; S.R. Geedipally; D.Lord; The Poisson-Weibull generalized linear model for analyzing motor vehicle crash data, Safety science, 54, 38-42(2013).
15.    M. H, Tahir; G. M. Cordeiro; Compounding of distributions: a surey and new generalized class, Jounal of statistical distributions and applications, 3(1), 3-13(2016).
16.    M. H. Tahir; G. M. Cordeiro; A. Alzaatreh; M. Mansoor; M. Zubair; The logistic-X family of distributions and its applications, Communications in statistics- Theory and methods, 45(24), 7326-7349(2016).
17.    M. H. Tahir; M. Zubair, G. M. Cordeiro; A. Alzaatreh; M.  Mansoon; The Poisson-X family of distributions, Journal of Statistical Computation and Simulation, 86(4), 2901-2921,(2016).
18.    R. Grine; H. Zeghdoudi; On Poisson quasi-Lindley distribution and its applications, Journal of modern applied statistical methods, 16(2), 21(2017).
19.    T. G. Ramires; L. R. Nakamura; A. J Righetto; R. R. Pescim; T. S. Telles; Exponentiated uniform distribution: An interesting alternative to truncated models, Semina Ciências Exatas e Tecnológicas, 40(2), 107-114(2019).
20.    Y.Gencturk; A. Yigiter, Modelling claim number using a new mixture model: negative binomial gamma distribution, Journal of Statistical Computation and Simulation, 86(10), 1829-1839(2016).
21.    W. Wongrin; W. Bodhisuwan; Generalized Poisson–Lindley linear model for count data, Journal of Applied Statistics, 44(15), 2659-2671(2017).

ISSN(P) 2350-0174

ISSN(O) 2456-2378

Journal Content
Browser