1.
A. Srihari; P. Mousumi and S. Krishnaswamy;
A Comparative Study and Analysis of Time Series Forecasting
Techniques. SN Computer Science, 1(3),
1-7 (2020).
2.
E. Szolgayova; Modelling and
Forecasting Daily River Discharge Considering Autoregressive
Heteroskedasticity. Geophysical
Research Abstract, 13, EGU2011-10681-1, (2011).
3.
G.E.P. Box and G.M. Jenkins;
Time Series Analysis: Forecasting and Control. Holden-Day, Boca Raton, (1976).
4.
H. Altaf and M. Nasser; Comparison of GARCH and
Neural Network Methods in Financial Time Series Prediction. Proceedings of the
International Conference on Computer and Information Technology, 25-27 December
2008, Khulna, Bangladesh (2008).
5.
J. Suhaila and J. AbdulAziz;
Fitting the Statistical Distributions to the Daily Rainfall Amount in
Peninsular Malaysia. Jurnal Teknologi,
Universiti Teknologi Malaysia, 46(C), 33–48 (2007).
6.
O. Margaretha and Herena, P; Arima
Model for Forecasting the Price of Medium Quality Rice to Anticipate Price
Fluctuations. Procedia Computer
Science, 135, 707-711 (2018).
7.
R.F. Engle; Autoregressive
Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom
Inflation. Econometrica, 50(4),
987–1007 (1982).
8.
T. Bollerslev; Generalized Autoregressive
Conditional Heteroscedasticity. Journal
of Econometrics, 31(3), 307-327 (1986).
9.
W. Fang,; Li. Menggang,; Mei.
Yiduo and Li. Wenrui; Time Series Data Mining: A Case Study with Big Data
Analytics Approach. IEEE Access,
(2017), DOI:10.1109/ACCESS.2017.
10.
W. Wang; P. H. A. J. M. Van
Gelder; J. K. Vrijling and J. Ma; Testing and Modeling Autoregressive
Conditional Heteroskedasticity of Streamflow Processes, Nonlinear Processes in Geophysics, 12(1), 55–66 (2005).
11.
Y. Fadhilah and L.K. Ibrahim;
Hybrid of ARIMA-GARCH Modeling in Rainfall Time Series. Jurnal Teknologi, 63(2), 27-34 (2013).