J. R. Artalejo; A classified bibliography of research on
retrial queues Progress in 1990-1999, Top 7,
187-221(1999a).https://doi.org/10.1007/BF02564721
J. R. Artalejo; Accessible bibliography onretrial queues,
Mathematical and Computer Modelling, 30 223-233(1999b).
https://doi.org/10.1016/S08957177(99)00128-4
G. Ayyappan; A. MuthuGanapathiSubramanianandGopalsekar (2009);
M/M/1 Retrial Queueing System with Non-preemptive priority Service and
Single Vacation – Exhaustive Service, Pacific Asian Journal of
Mathematics, 3(1-2) 307-322 (2009).
A. Azhagappan; E. Veeramani; W. Monica; K. Sonabharathi;
Transient solution of an M/M/1 Retrial Queue with Reneging from Orbit;
Application and Applied Mathematics, 13(2) 628-638 (2018).
A. Azhagappan; T. Deepa; Transient Analysis of a markovian
Single Vacation Feedback Queue with an Interrupted Closed Down Time and
Control of Admission during Vacation, Applications and Applied
Mathematics, 14(1) 34-45 (2019).
S. Damodaran; A. MuthuGanapathiSubramanian;GopalSekar;
Transient Behaviour of M/M/1 Retrial Queueing Model, Journal of
Scientific Computing, 9(3) (2020).
S. Damodaran; A. MuthuGanapathiSubramanian;GopalSekar;
Computational Approach for Transient Behaviour of Single server Retrial
Queueing System with Non-pre emptive priority services, Science,
Technology and Development, IX (VII)
2020.http://journalstd.com/gallery/7-july2020.pdf
B. T. Doshi; Queueing Systems with vacation – a Survey, Queueing systems, 1 29-66 (1986).
G.I Falin; A survey of retrial queues, Queueing Systems, 7(2) 127-167 (1990)
G.I. Falin; J.G.C. Templeton; Retrial Queues, Monographs on Statistics and Applied Probability, Chapman and Hall, 75 (1997).
U. Gupta; A. Banik; S. Pathak; Complete analysis of MAP/G/1/N
queue with single (multiple) vacation(s) under limited service
discipline, Journal of Applied Mathematics and Stochastic Analysis, 3
353–373 (2005).https://doi.org/10.1155/JAMSA.2005.353
U. C. Gupta; K. Sikdar; Computing queuelength distributions in
MAP/G/1 N queue under single and multiple vacation, Applied Mathematics
and Computation, 174 1498-1525
(2006).https://doi.org/10.1016/j.amc.2005.07.001
Indra; S. Bansal; The transient solution of an unreliable
M/G/1 queue with vacations, International Journal of Information and
Management Sciences, 21 391-406 (2010).
K. Kaliappan; J. Gananraj; S. Gopinathan; R.Kasturi; Transient
analysis of an M/M/1 queue with repairable server and Multiple
vacations, International Journal of Mathematics in Operations Research,
6(2) 193-216 (2014).
K. Ramanath; K.Kalidass; A two phase service M/G/1 vacation
queue with general retrial times and non-persistent customers. Int. J.
Open Problems Compt. Math., 3(2) (2010).
J. C. Ke; C. H.Lin;Maximum entropy approach for batch-arrival
under N policy with a non-reliable server and single vacation, Journal
of Computational and Applied Mathematics, 221 1-15
(2008).https://doi.org/10.1016/j.cam.2007.10.001
J. C. Ke; C. H. Wu; Z.G. Zhang; Recent developments in
vacation queueing Models: A Short Survey, International Journal of
Operations Research, 7(4) 3-8 (2010).
B. K. Kumar; D. Arivudainambi; The M/G/1retrial queue with
Bernoulli schedules and general retrial times, Computer and Mathematics
with Application, 43 15-30
(2002).https://doi.org/10.1016/S0898-1221(01)00267-X
K. LakshmI; K. Ramanath; (2013)An M/G/1RetrialQueue with a
single vacation Scheme and General Retrial times, American Journal of
Operational Research, 3(2A) 7-16 (2013).
https://doi.org/10.5923/s.ajor.201305.02
K. C. Madan; W. Abu-Dayyeh; F. Taiyyan; Atwo server queue with
Bernoulli schedules and a single vacation policy, Applied Mathematics
and Computation,145
59-71(2003).https://doi.org/10.1016/S0096-3003(02)00469-1
S. MaragathaSundari; S. Srinivasan; Analysis of Transient
Behaviour of M/G/1 Queue with Single Vacation, International Journal of
Pure and Applied Mathematics, 76(1) 149-156 (2012).
P. R. Parthasarathy; R. Sudhesh; Time-
dependent analysis of a single-server retrial queue with
state-dependent rates, Operations Research Letters, 35
601-611(2007).https://doi.org/10.1016/j.orl.2006.12.005
S. Ammar; Transient analysis of an M/ M /1queue with impatient
behavior and multiple vacations, Applied Mathematics and Computational
260 97–105 (2015). https://doi.org/10.1016/j.amc.2015.03.066
S. Ammar; Transient solution of an M/M/1vacation queue with a
waiting server and impatient customers, Journal of the Egyptian
Mathematical Society, 25 337-342 (2017).
https://doi.org/10.1016/j.joems.2016.09.002
R. Sudhesh; A. Azhagappan; Transient
analysis of M/M/1 queue with server vacation customers
impatient and a waiting server timer, Asian Journal of Research in
Social Sciences and Humanities, 6(9) 1096-1104 (2016).
http://dx.doi.org/10.5958/2249-7315.2016.00857.1
H. Takagi; Queueing Analysis, Vacation and Priority Systems, North-Holland, Amsterdam, 1 (1991).
N. Tian; Z. G. Zhang; Vacation Queueing Models – Theory and Applications, Springer, Newyork, (2006).
M. Wozniak; M. WojciechKempa; M. Gabryel; K. Robert Nowicki; A
Finite–Buffer Queue with a Single Vacation Policy: An Analytical Study
with Evolutionary Positioning, International Journal of Applied
Mathematics and Computer Science, 24(4) 887–900 (2014).
https://doi.org/10.2478/amcs-2014-0065
X. L. Xu; Z. G. Zhang; The analysis of multi server
queue with single vacation and a (e,d) policy, Performance
Evaluation, 63(8) 825-838
(2006).https://doi.org/10.1016/j.peva.2005.09.003
Z. G. Zhang; N. Tian; Analysis of queueing system with
synchronous single vacation for some servers, Queueing Systems, 45
161-175 (2003a). https://doi.org/10.1023/A:1026097723093